
2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 21-24, 2007, New Paltz, NY

JOINT ITERATIVE MULTI-SPEAKER IDENTIFICATION AND SOURCE SEPARATION
USING EXPECTATION PROPAGATION

John MacLaren Walsh, Youngmoo E. Kim, and Travis M. Doll

Electrical and Computer Engineering
Drexel University

Philadelphia, PA 19104 USA
{jmw96,ykim,tmd47}@drexel.edu

ABSTRACT
The identification of individuals by the sound of their voices, a

fairly straightforward task for humans, has proven to be quite dif-

ficult to achieve in a robust way computationally. The majority of

past work in speaker (talker) identification has focused on the sin-

gle speaker case, but these systems are easily confounded by most

real-world settings where multiple talkers may be overlapping or

speaking simultaneously. To address this situation, we propose a

system that jointly identifies and separates the acoustic features

of multiple talkers that fall within a library of known individu-

als. This system uses the probabilistic framework of expectation

propagation (EP) to iteratively determine model-based statistics of

both speaker identity and feature separation. This research has

applications in audio surveillance as well as the forensic analysis

of real-world sound recordings that contain multiple simultaneous

talkers. Robust speaker identification could also lead to improved

interfaces for human-computer interaction.

1. INTRODUCTION

Recognizing a known individual through the sound of their voice is

a relatively easy task for most people, even when the voice is heard

in the presence of noise, background sounds, and other voices. A

similarly robust recognition capability in machines would enable

a wide variety of applications, particularly in the areas of secu-

rity and safety, such as automated audio surveillance and forensic

sound analysis. Robust speaker identification could also improve

the human-machine interface, e.g., a computer able to identify and

transcribe the voice of a particular speaker among many.

In this paper, we propose a system that, given multiple si-

multaneous acoustic observations, jointly separates and identifies

known speakers from a sound mixture. Our system is motivated

by the framework of Expectation Propagation (EP) and passes in-

formation as first- and second-order statistics iteratively between

the separation and identification subsystems.

2. BACKGROUND

A fair amount of research on speaker identification has been direct-

ed towards the comparison of various acoustic features for speaker

identification (see [1]). Most recent work has focused on spectral

features that correlate to the time-varying shape of the vocal tract.

In particular, mel-frequency cepstral coefficients (MFCCs) have

gained broad acceptance for the application of automatic speech

recognition as well as other machine listening problems [2]. These

features are also used in our speaker identification system.

Most prior work in voice identification has focused on the case

of a single speaker and an uncorrupted audio channel. These con-

straints are appropriate for such applications as user authentication

where the input can be controlled, and “clean” features are needed

for the training of accurate classifiers. When novel data is pre-

sented to such a system it is classified as one of the known speak-

ers, generally using an established pattern classification method,

such as Gaussian mixture models (GMMs) [3] and neural networks

[4]. A review of many such speaker identification systems is pre-

sented in [5] and [6]. The most accurate systems further constrain

the vocal input to be a known “pass phrase” and have achieved

equal error rates (where the frequency of false positives equals that

of false negatives) of less than 1 percent. The best text-independent

systems have achieved equal error rates of under 5 percent in the

most recent NIST Speaker Recognition evaluation in 2006 [7].

For applications such as audio surveillance and the forensic

analysis of sound recordings, it is not realistic to adhere to a single

speaker, noise-free, and a priori known text scenario. Recent NIST

evaluations have also included a two-speaker telephone conversa-

tion, in which the goal was to detect whether a targeted speaker

was present in the conversation (mostly non-simultaneous speech).

The best performers in this task, which also achieved equal error

rates less than 10% [7], involved the tracking of the target speaker

throughout the conversation. Other recently proposed methods

have addressed speaker tracking jointly with speaker separation in-

corporating feedback between the tracking and separation modules

[8] as well as joint speaker identification and separation where the

identification stage (from mixed speech data) is used to inform the

source separation [9]. These are similar in spirit to our proposed

system, but utilize different analysis models and methods.

3. PROBLEM STRUCTURE

The problem in the present context is one of determining the iden-

tities of speakers from the outputs of microphones, which are re-

ceiving a mixture of their speech. We will consider a system which

has been a priori provided a library containing speech from each

of the speakers we would like to identify. Suppose for the moment

that there are P speakers, and that the audio amplitude of the ut-

terance of the pth speaker at time instant n is ξ
(p)
n . We will model

the acoustics of the room relating the speech of the speakers with

the microphone inputs, with the equations

γn+1 = Aγn + ξn (1)

rn = Hγn + ζn (2)
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whose parameters can be chosen to allow for either a FIR or IIR

channel, and ζn are modeled as i.i.d. Gaussian vectors with mean

0 and covariance matrix σ2I. In particular, we can model a FIR

filter of order R if we collect the utterances into the vector ξn :=�
ξ
(1)
n , . . . , ξ

(P)
n ,01×RP

�T

, and define the matrices in (1) and (2)

as

H := [H0H1 · · ·HR] A :=

�
0P×PR 0P×P

IRP 0RP×P

�

where Hr is the matrix describing the response of the channel at

time instant r .

The model we employ for the different speakers uses mel-

frequency cepstral coefficients (MFCCs)[10, 11]. To facilitate the

discussion, break each speaker’s audio utterances up into blocks of

length L

x
(p)
k :=

�
ξ
(p)

k L
2 +1

, ξ
(p)

k L
2 +2

, . . . , ξ
(p)

k L
2 +L

�
(3)

These blocks are used to calculate the MFCCs u
(p)
k through the

relation

u
(p)
k = M(x

(p)
k ) := C log

�
T|FGx

(p)
k |

�

where both the log and | · | operations are understood to operate

element-wise, and F is the L × L DFT matrix, G is the diagonal

matrix with a Hamming window as its diagonal elements, T is

the D × L matrix whose rows are the triangular basis functions,

and C is the K × D matrix formed from the rows of the DCT

matrix whose bins are kept[10, 11]. Suppose for now that all of

the speakers are in the library, and denote the identity index �p
of speaker p in the library. Collect these identity indices into the

vector �. By analyzing previous samples of the speakers in the

library’s speech, we have stored for each speaker in the library a

model for the MFCCs pu|� . Given the identity of the speakers, we

model the MFCCs as independently and identically distributed, as

is common in many baseline speaker identification systems.

Since we are interested in inferring the identities of the speak-

ers from the audio outputs of the microphones, we are ultimately

interested in the a posteriori probabilities p�|r, which, for a given r

are proportional to the joint density pr,� . Collecting all of the ξ
(p)
n

over all p and all n into the vector ξ, and all of the u
(p)
k similarly

into the vector u, this joint density can be factored as

pr,� =

�
pr|ξ,u,�pξ|u,�pu|�p�dξdu

Via the audio acoustics channel model (1,2), we model the au-

dio data as dependent on the speaker identities and MFCCs only

through the audio utterances of each of the speakers, so that pr|ξ,u,� =
pr|ξ . We also model the audio utterances of the speakers as inde-

pendent of each other, and dependent on the identity indices of the

speaker only through the MFCCs. This is equivalent to assuming

pξ|u,� =
�
p

pξ(p)|u(p)

so that the MFCCs are a sufficient statistic for determining the

speaker identities.

Finally, no two speakers can have the same identity, and it is

generically improbable that we will be able to determine a prior

density for p� carrying more information than this, so we model

the prior distribution for the speaker identities as uniform over all

collections of P different identities. This finally leaves us with the

factoring of the joint density

pr,� =

�
p�pr|ξ

�
p

pξ(p)|u(p)

�
k

p
u
(p)
k

|�pdξdu (4)

In this way, we have simplified analytically the problem of

determining the identities of the speakers into the marginalization

of a conditional probability density which factors into a special

structure. While due to the dimensionality of the problem, one

would never be able to implement such an integral in practice, we

can hope to refine iterative approximations to it with expectation

propagation, a close variant of belief propagation, as described in

the next section.

4. EXPECTATION PROPAGATION BASED APPROACH

Belief propagation, expectation propagation[12, 13], and the sum

product algorithm [14] are all iterative methods for approximat-

ing marginalization such as in (4), where the joint density to be

marginalized has a complicated multiplicative sparse dependence

structure. Expectation propagation, the particular method to be

discussed here, aims at approximating the marginal distribution by

iteratively searching for the best1 approximation to the joint den-

sity pr,ξ,u,� within a chosen set of approximate joint densities P
whose marginals may be easily calculated.

Here we select the family of densities P within which to it-

eratively refine approximations to the joint density to be those

densities which model ξ, u, and � as independent from one an-

other. More specifically, the densities in P model the separated

speech samples ξ
(p)
n s as independent Gaussian random variables,

the MFCCs u
(p)
n as independent Gaussian random vectors, and

the �(p) as independent discrete random variables taking values in

{1, . . . , J}. Rather than discussing the generic expectation propa-

gation/sum product/ belief propagation algorithm framework here,

we provide a description of expectation propagation together with

some approximations adapted to the joint speaker ID and source

separation problem. The system diagram of this adaptation is shown

in Figure 1, where the labels along the arrows indicate message s

passed under expectation propagation, whose calculation we will

discuss presently.

The first module, the Kalman filter2, given a sequence of prior

means s
(p)
n and variances s

(p)
n which model ξ

(p)
n as independent,

uses pr|ξ to calculate a sequence of posterior means and variances

given the audio observation, which are collected into blocks t
(p)
k

for the MFCC calculation (hence the subscript k ). This sequence

of posterior means and variances is then used to calculate, through

a linearization of the MFCC calculation around the means, a series

of means and covariance matrices for the MFCCs. These means

and covariance matrices are then compared to those in a library of

known speaker’s MFCC means and covariance matrices, yielding a

vector of log probability ratios λ(p) for each speaker describing the

1Here “best” may be interpreted both from the perspective an appro-
priate free energy functional, as well as from a constrained maximum a
posteriori sense [15].

2Here, we are implicitly approximating the fixed interval smoother
[16], which can be found e.g. via the Rauch Tung Striebel algorithm[17],
and would traditionally be called for by expectation propagation, with the
Kalman filter in order to cut down on computational complexity
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Figure 1: Iterative source separation and speaker identification system. Error bars represent standard error for each simulation configuration.

likelihood that speaker p has a particular identity index in the li-

brary. Because no t wo speakers can have the same identity, we can

revise the beliefs that speaker p has identity �(p) over all speakers

according to the constraint that �(p) �= �(p
′) ∀p �= p′. This revi-

sion yields extrinsic information (which is the posterior log prob-

ability ratio minus prior log probability ratio) µ(p). The iterative

structure then uses the extrinsic information as a prior probability

in the library unit pu(p)|�(p) to provide a new prior estimate for the

mean MFCC vector n(p) and MFCC covariance matrix F(p) for

the pth speaker. This prior mean MFCC vector is then inverted

into a prior audio sample Gaussian distribution with means s
(p)
n

and variances s
(p)
n for ξ

(p)
n which is used as prior information in

the Kalman filter, repeating the previously described iterative pro-

cess from the beginning of this paragraph. We now describe in

detail the mathematics of the operation of each module in the sys-

tem diagram shown in Figure 1.

4.1. Kalman Filter Module

The prior means s
(p)
n passed into the Kalman filter can be used to

subtract off the prior mean of the received signal in order to get a

model for which the prior mean of the state vector is zero, via the

equations

r′n := rn −
R�

r=0

Hr [s
(1)
n−r , . . . , s

(P)
n−r ]

T

We can then substitute this into the standard Kalman filter equa-

tions

Kn = Σn|n−1H
T
�
HΣn|n−1H

T + σ2I
�−1

dn = r′n − r̂n|n−1, ŷn|n = ŷn|n−1 + Kndn

Σn|n = Σn|n−1 − KnHΣn|n−1

ŷn+1|n = Aŷn|n , r̂n+1|n = Hŷn+1|n

Σn+1|n = AΣn|nA
T + diag

�
v(1)
n , v(1)

n , . . . , v(P)
n ,01×PR

�

Because it corresponds to having observed all of those elements of

the observations directly involved with it, we should use the last

(temporally) estimate of a source symbol, passing the associated

mean and variance output from the Kalman filter on to the MFCC

calculation.�
w

(p)
k

�
i
= [Σ(k L

2 +i+R)|(k L
2 +i+R)]RP+p,RP+p

�
t
(p)
k

�
i
= [ŷ(k L

2 +i+R)|(k L
2 +i+R)]RP+p + s

(p)

k L
2 +i

4.2. MFCC Module

Let F be the DFT matrix of dimension L. Let G be a diagonal

matrix with the Hamming window of length L as its diagonal el-

ements. Collect the triangular basis functions used in the MFCC

calculation into a matrix T of dimension D × L. Let C be the K
lowest frequencies of the DCT matrix of size D .

The MFCC module operates using a local linear approxima-

tion to the MFCC calculation with matrix

M
(p)
k = Cdiag

�
T|Ft

(p)
k |
�−1

Tdiag
�
|FGt

(p)
k |
�−1

�
diag

�
�{FGt

(p)
k }

�
�{FG} + diag

�
�{FGt

(p)
k }

�
�{FG}

�

In the “right” moving direction, then the mean and covariance ma-

trices are

n
(p)
k = C log

�
T|FGt

(p)
k |
�

F
(p)
k = M

(p)
k diag(w

(p)
k )(M

(p)
k )T

In the “left” moving (feedback) direction, the mean and variances

are

v
(p)
k = diag

��
diag(w

(p)
k )−1 + (M

(p)
k )T (E

(p)
k )−1M

(p)
k

�−1
�

s
(p)
k = diag(v

(p)
k )

�
diag(w

(p)
k )−1t

(p)
k + (M

(p)
k )T (E

(p)
k )−1m

(p)
k

�
Because any given time sample of the audio data is associated with

two MFCC vectors, we combine the means and covariances of the

two estimates fed back from the MFCC module into one via the

equations

v
(p)

k L
2 +i

=

�
� 1

[v
(p)
k ]i

+
1

[v
(p)
k−1]i+ L

2

	



−1

and

s
(p)

k L
2 +i

= v
(p)

k L
2 +i

�
� [s

(p)
k ]i

[v
(p)
k ]i

+
[v

(p)
k−1]i+ L

2

[v
(p)
k−1]i+ L

2

	



−1
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4.3. Library Module

Let zj and Pj be the mean and covariance of the j th speaker in the

library, respectively, and let there be J speakers in the library. For

a particular j , k , p define the matrix Σ =
�
P−1

j + (F
(p)
k )−1

�−1

and vector m = P−1
j zj + (F

(p)
k )−1n

(p)
k . The library module

calculates a vector of log likelihood ratios with the equation

[λ(p)]j :=
�
k

1

2
mT Σ−1m − 1

2
(n

(p)
k )T (F

(p)
k )−1n

(p)
k

−1

2
zT
j P−1

j zj +
1

2
log

�
det(Σ)

det(Pj ) det(F
(p)
k )

�

In the feedback direction, the library module takes a prior distribu-

tion for the identity of speaker p and calculates a posterior mean

and covariance matrix for the MFCCs of p.

m
(p)
k :=

�
j

zj
exp([µ(p)]j )

‖ exp(µ(p))‖1
, E

(p)
k :=

�
j

Pj
exp([µ(p)]j )

‖ exp(µ(p))‖1

In the previous equations, ‖‖1 is simply the sum of the absolute

values of its vector argument.

4.4. All Speakers Have Different Identities Module

Finally the “all speakers have different identities module” enforces

that no two speakers can have the same identity. Stating this math-

ematically, let

F :=
�

� ∈ {1, 2, . . . , J}P |�j �= �k ∀j �= k
�

Ideally, the “all speakers have different identities” module would

compute

[µ(p)]j := log

�
� �

�∈F|�p=j

exp

�
��

p′
[λ(p)]�p′

	


	

− [λ(p)]j

But this is perhaps too computationally intensive. Thus, we utilize

the following alternative based on the union bound

[µ(p)]j :=
�

p′|p �=p′
log

�
1 − exp([λ(p′)]j )

‖ exp(λ(p′))‖1

�

5. SIMULATIONS AND CONCLUSIONS

Results for 3800 monte carlo simulations (varying speaker and

channel combinations) of the proposed iterative estimator are shown

at the right of Figure 1. These simulations were calculated using

random Gaussian matrix valued channels with R = 9 with an ex-

ponentially decaying power profile with decay constant 1
2

, with the

signal to noise ratios in dB displayed as the independent variables

in the plot. The performance of the proposed iterative structure at

the first and 5th iteration is compared with: a “separate feedfor-

ward” structure which just calculates MFCCs from the means out-

put from the Kalman filter and does likelihood ratio based speaker

ID with the MFCCs, and a ”joint feedforward” structure which

is “separate feedforward” with the additional constraint that all

speakers must have different identities taken into account. The it-

erative structure generally outperforms the feedforward structures

in correctly determining both speakers after 5 iterations. Ongoing

research will “tweak” the iterative structure and search for stop-

ping rules that lead to further performance improvements.
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[17] O. Cappé, E. Moulines, and T. Rydén, Inference in Hidden
Markov Models. Springer Science and Business Media,

2005.


