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ABSTRACT
We examine performance issues encountered when connecting two
adaptive signal processing devices in a series feedfoward fashion.
After introducing the notion of an adaptive element, we develop a
simple behavior theory for series feedfoward connected adaptive
elements given a few reasonable assumptions. We then move on
to predict ways such interconnections of adaptive elements may
misbehave. A brief example of misbehavior in a pair of intercon-
nected adaptive receiver components is included to highlight the
implications of this emerging theory.

1. INTRODUCTION

Interconnected adaptive systems are everywhere. They are a part
of us, physiologically (e.g. the human visual system), and in our
social interactions (e.g. the national economy). It is not surprising,
then, that we engineer them into devices we build (e.g. adaptive
control systems, adaptive communications receivers, and adaptive
image processors). Oftentimes these systems are so complex that it
is very difficult to determine or predict their behavior as a whole,
while on a smaller scale (e.g. on the level of a single business
or person in the human economy, a single neuron in the visual
system, or a single adaptive device in an adaptive receiver) we
can model their behavior quite accurately. Just as ancient Greek
philosophy posited the existence of the atom to begin a study of
complex chemistry, we posit the existence of an adaptive element:
the smallest scale upon which a system can be considered adap-
tive. Because we wish to study systems of interconnected adap-
tive elements, we first seek to characterize how one or two adap-
tive elements might behave when connected together. This pa-
per, along with [1], contains a couple of modest, somewhat ob-
vious, and easy to reach beginnings of a theory of interconnected
adaptive elements. In particular it characterizes the behavior and
misbehavior of a particularly simple binary (that is, two element)
adaptive compound in which the elements are connected together
in series feedfoward fashion. Such a simple interconnection is rife
in communication systems receivers, which is our application of
interest here. To begin, we must characterize mathematically what
we mean by ”adaptive element.”

2. WHAT IS AN ADAPTIVE ELEMENT?

We use the phrase ”adaptive element” as a shortened form of ”adap-
tive signal processing element.” The term ”adaptive”, in this in-
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stance, indicates that the element changes it processing based on
parameters it infers from its input. We begin by providing a math-
ematical description of an adaptive element. We can discern two
tasks which an adaptive element must perform:

1. Process the input to create the output, and

2. Adapt its method of processing the input to create the output
based on previous inputs and outputs.

Mathematically speaking, this separation into tasks suggests the
idea that there are two subsystems of equations involved with an
adaptive element. We call these two subsystems the subelements
or sub-atomic particles. Theprocessing subelementprocesses the
input signal to create an output signal, and theadaptation subele-
mentdetermines how it should do so. Because we wish to be able
to describe the adaptive element in a mathematical manner, we
assume that the communication between the adaptive subelement
and the processing subelement occurs in the form of a parameter
vector, which we call theadaptive state. The adaptive state totally
determines the manner in which the adaptive element processes
the current input to create the current output. Thus, a mathemati-
cal description of the processing subelement is

yk = g(ak, xk)

wherexk ∈ R
p is the input,ak ∈ R

n is the adaptive state, and
yk ∈ R

Q is the output of the adaptive signal processing element
at timek. On the other hand, a mathematical description of the
adaptation element is

ak+1 = f(k, ak, xk)

Where, as in Figure 1,ak ∈ R
n is the adaptive state at positive

integer time instantk andxk ∈ R
P is the input vector at time

k. The right hand pane of Figure 1 emphasizes the separation of
the adaptive structure into two substructures, one that controls the
adaptation by changing the adaptive states, and one that creates the
input from the output based on the adaptive state. Thus, the adap-
tation subelement lies within the lower of the two boxes, while the
processing subelement lies within the upper of the two boxes. The
left pane shows a diagram that is equivalent, yet more compact,
which we will use from this point on.

3. CASCADED ADAPTIVE ELEMENTS

Now that we have defined an adaptive element, we immediately
turn our attention to systems containing two adaptive elements in
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ak+1 = f(k, ak, xk)

yk = g(ak, xk)

yk
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ak+1 = f(k, ak, xk)
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Fig. 1. Two equivalent representations of an adaptive element.

xk yk zk

yk = ga(ak, xk)

ak+1 = fa(ak, xk)

zk = gb(bk, yk)

bk+1 = fb(bk, yk)

Fig. 2. Two adaptive devices connected in series feed-forward
form.

cascade form, as shown in Figure 2. We refer to this configura-
tion as a Series Feed-Forward Binary Adaptive Compound (SFF-
BAC). We now develop a theorem that predicts the way in which
these cascaded adaptive elements will behave. Due to the suc-
cess of SFFBACs in practice [2], we would expect that, if the first
adaptive element is contractive1 to desirable parametersa∗

k, and
the second adaptive element is contractive to desirable parameters
b∗k whenever the first adaptive element is operating perfectly (ie,
the parameters are ata∗

k), then the two connected elements should
eventually reacha∗

k andb∗k. Such an idea is common engineering
intuition. We determined a set of engineering intuitive qualitative
conditions like these, the Distributed Solution Conditions, which
lead to proper operation of the SFFBAC, in [1]. We now set about
proving that these qualitative/intuitive conditions actually guaran-
tee proper operation of the SFFBACs in a mathematically rigorous
way using the following theorem. We also indicate that the condi-
tions are robust to small modelling errors and time variation in the
desired points.

Theorem 1 (DS SFFBACs Time Variation and Noise) Consider
the SFFBAC shown in Figure 2 suffering from disturbances (noise
na

k, nb
k) and time variation.

ak+1 = fa(k, ak, xk) + n
a
k (1)

yk = ga(ak, xk)

bk+1 = fb(k, bk, yk) + n
b
k = fb(k, bk, ga(ak, xk)) + n

b
k (2)

The desired equilibrium trajectories are denoteda∗
k andb∗k:

a
∗
k = fa(k, a

∗
k, xk) ∀k

b
∗
k = fb(k, b

∗
k, ga(a∗

k, xk)) ∀k

and we assume that the first adaptive element is uniformly con-
tractive to its desired parameters

‖fa(ξ, xk) − fa(a∗
k, xk)‖ < α‖ξ − a∗

k‖
α < 1 ∀ξ ∈ Ba∗

k
∀k

(3)

and that, given an ideal first adaptive element exactly at its de-
sired parameter settings, the second adaptive element is uniformly

1After each iteration the parameter is closer to the desired parameters
that it was previously.

contractive to its desired parameters

‖fb(ν, ga(a∗
k, xk)) − fb(b

∗
k, ga(a∗

k, xk))‖ < β‖ν − b∗k‖
β < 1 ∀ν ∈ Bb∗

k
∀k

(4)

whereBa∗

k
= {ξ|‖ξ − a∗

k‖ < ra} andBb∗
k

= {ν|‖ν − b∗k‖ < rb}

and we assumeα 6= β2. Assume Lipschitz continuity in the cou-
pling of the first element’s input-output equation and the second
element’s state equation.

‖fb(ν, ga(ξ1, xk)) − fb(b, ga(ξ2, xk))‖ < χ‖ξ1 − ξ2‖
∀ξ1, ξ2 ∈ Ba∗

k
∀ν ∈ Bb∗

k

(5)

Finally, assume small enough noise and slow enough time varia-
tion.

‖a∗
k+1 − a

∗
k‖ < d1 ‖b∗k+1 − b

∗
k‖ < d2 (6)

‖na
k‖ < ca ‖nb

k‖ < cb (7)

Then, if the initializations are accurate enough, the disturbance is
small enough, and the time variation is slow enough, such that

ra >
d1 + ca

1 − α
+ ‖a1 − a

∗
1‖ (8)

rb > βkmax‖b1 − b∗1‖ + αχ(αkmax−βkmax )
α−β

‖a1 − a∗
1‖

+ d1+ca

(1−α)(1−β)
+ d2+cb

1−β

(9)
where

kmax =
ln

(

ln(β)
ln(α)

(

1 −
(α−β)‖b1−b∗1‖

χ‖a1−a∗

1‖

))

ln(α
β
)

(10)

then the whole system is exponentially stable to a ball of sized1+ca

1−α

arounda∗
k and a ball of sized2+cb

1−β
+ χ(d1+ca)

(1−α)(1−β)
aroundb∗k:

‖ak+1 − a
∗
k+1‖ ≤ α

k‖a1 − a
∗
1‖ +

d1 + ca

1 − α
(11)

‖bk+1 − b∗k+1‖ ≤ βk‖b1 − b∗1‖ + χ(αk−βk)
α−β

‖a1 − a∗
1‖

+ d2+cb

1−β
+ χ(d1+ca)

(1−α)(1−β)

(12)

¨ Subtractinga∗
k+1 from both sides, addinga∗

k − a∗
k to the right

hand side of (1), and using the triangle inequality gives

‖ak+1 − a
∗
k+1‖ ≤ ‖fa(k, ak, xk)− a

∗
k‖+ ‖a∗

k+1 − a
∗
k‖+ ‖na

k‖

assuming thatai ∈ Ba∗

i
∀i and using (6), (7), and (3) we have

‖ak+1 − a
∗
k+1‖ ≤ α‖ak − a

∗
k‖ + ca + d1

which, after running the recursion and using the sum of an infinite
geometric series gives (11). Thus, to guarantee thatai ∈ Ba∗

i
∀i,

we require (8). Proceeding in a similar manner with the second
adaptive element, we have

‖bk+1 − b
∗
k+1‖ ≤ ‖fb(k, bk, ga(ak, xk)) − b

∗
k‖ + cb + d2

Adding fb(k, bk, ga(a∗
k, xk)) − fb(k, bk, ga(a∗

k, xk)) inside the
norm on the right hand side, using the triangle inequality again,
assuming thatbi ∈ Bb∗

i
∀i, and using (4) and (5) gives

‖bk+1 − b
∗
k+1‖ ≤ β‖bk − b

∗
k‖ + χ‖ak − a

∗
k‖ + cb + d2

2For the special case whenα = β, see [1].



Substituting in (11) and running the recursion gives

‖bk+1 − b∗k+1‖ ≤ βk‖b1 − b∗1‖ +
∑k−1

i=0 βiχ
(

αk−i−1

‖a1 − a∗
1‖ + d1+ca

1−α

)

+ d2+cb

1−β

Pulling out anαk−1 and using the sum of a finite/infinite geometric
series gives (12). To finish we must check our assumption that
bi ∈ Bb∗

i
∀i. If the bk with the largest‖bk − b∗k‖ is in Bb∗

k
, then

all of the otherbis will be in Bb∗
k
. To find the largest, we take

the derivative of (12) with respect tok and setting it equal to zero
gives

‖b1 − b
∗
1‖ −

χ‖a1 − a∗
1‖

α − β
= −

ln(α)

ln(β)

χ‖a1 − a∗
1‖

α − β
e
ln( α

β
)kmax

which indicates that the time instant at which the right hand side
of (12) is maximized iskmax as given in (10). This indicates that
we should require (9) to guarantee that we always stay within the
balls in which our assumptions are valid.¨

Unfortunately, in most cases, (3) and (4) do not hold for the
instantaneous update of an adaptive algorithm, especially in the
large family of stochastic gradient algorithms. However, in this
case, most often they are true for the expected system, which is
the probabilistic mean of the adaptive algorithm. Given some reg-
ularity conditions, one can guarantee an error between the mean
system and the true system which shrinks at least linearly with the
step size3 µ using stochastic hovering theorems [3]. Thus hence-
forth we will analyze the behavior of the averaged system with
the realization that the instantaneous system will behave arbitrar-
ily close to it if we shrinkµ small enough.

Now that we have given conditions under which we can ex-
pect the SFFBAC to behave, that is for the trajectoriesak andbk

to approach their desired values, we wish to predict ways in which
such an interconnected system may fail. Intuitively, if the first
adaptive element has a step size (µa) which is chosen too small
to be able to track the desired parameter settingsa

opt
k , the second

adaptive element may be kept from moving to its desired param-
eter settings. The next theorem makes this intuitively simple idea
mathematically rigorous and proves it.

Theorem 2 (Zero Manifold Movement in SFFBACs) Consider
the SFFBAC shown in Figure 2, and suppose its elements take the
form

âk+1 = âk + µfa(âk − a
opt
k ) (13)

bk+1 = bk + µbfb(k, bk, ak)

Letfa be a continuously differentiable function such thatfa(0) =
0 andα ≡ ‖I + µadfa(0)‖ < 1, wheredfa(0) is the derivative
of fa evaluated at 0. Supposeaopt

k is periodic, with an average
component ofa∗, such that:

a
∗ =

1

N

N+k
∑

i=k

a
opt
k ∀k

Define a functionb∗(k, a) such that4

0 = fb(k, b
∗(k, a), a) ∀k, a ∈ D (14)

3hidden withinfa(k, ak, xk) andfb(k, bk, yk) in our previous nota-
tion, but included explicitly in the next theorem.

4Note that such a function is guaranteed to exist by the Implicit Func-
tion Theorem as long asdfb

db
|
(a,b)=(a∗,b

opt
k

)
6= 0 and we considerra and

rb small enough.

We callb∗(k, a) the zero-manifold of the adaptive algorithm.

g(k, b, a) =

{

‖b+µbfb(k,b,a)−b∗(k,a)‖
‖b−b∗(k,a)‖ b 6= b∗(k, a)

lim
b→b∗(k,a)

‖b+µbfb(k,b,a)−b∗(k,a)‖
‖b−b∗(k,a)‖ b = b∗(k, a)

Define

βra,rb
= sup

k∈N ,a∈Ba∗ (ra)

sup
b∈Bb∗(k,a)(rb)

g(k, b, a) (15)

with Bb∗(k,a)(rb) = {b|‖b − b∗(k, a)‖ ≤ rb} andBa∗(ra) =
{a|‖a − a∗‖ ≤ ra} so that we have

‖b + µbfb(k, b, a) − b
∗(k, a)‖ ≤ βra,rb

‖b − b
∗(k, a)‖

∀a ∈ Ba∗(ra), b ∈ Bb∗(k,a)(rb)

We assume that the algorithms were chosen such that when the first
element is at its optimal settingaopt

k the second adaptive element
is uniformly contractive tobopt

k . Thus∃ra, hb such thatβra,rb
<

1 ∀rb ≤ hb and b
opt
k = b∗(k, a

opt
k ), as is typically done when

using distributed solution tactics. Also, assume

ra > ‖a1 − a
∗‖ +

d

1 − α
+ ε(µa) (16)

and
rb > ‖b1 − b

∗(a∗
, 1)‖ +

c

1 − βra,rb

(17)

where we used the following constants:

d = sup
a∈B0(ha)

µa‖fa(ak+a
∗−a

opt
k )−dfa(0)

(

ak + a
∗ − a

opt
k

)

‖

c = sup
k

‖b∗(k, a
∗) − b

∗(k + 1, a
∗)‖

and the function,ε(µ) is O(µa). If these assumptions hold, the
first adaptive element’s state converges to a ball arounda∗, whose
size can be made arbitrarily small by shrinkingµa, and the second
adaptive element’s state converges to a ball aroundb∗(k, a∗).

‖ak+1 − a
∗‖ ≤ α

k‖a1 − a
∗‖ +

d

1 − α
+ O(µa) (18)

‖bk+1 − b
∗(k + 1, a

∗)‖ ≤ β
k
ra,rb

‖b1 − b
∗(1, a

∗)‖ +
c

1 − βra,rb

(19)
Thus, asµa → 0, it is possible that neither algorithm converges
to its optimal trajectory! Instead, the first element converges to
the average,a∗, of its optimal periodic trajectory, and the second
algorithm moves around in a zero manifold,b∗(k, a∗). Since it is
possible that neither adaptive element is at their optimum point,
there could be performance degradation in the system.

¨ Defineak = âk − a∗, and substitute it in (13) to get:

ak+1 = ak + µafa(ak + a
∗ − a

opt
k ) (20)

We define the ”linearization error”

h(a, k) = fa(ak + a
∗ − a

opt
k ) − dfa(0)

(

ak + a
∗ − a

opt
k

)

This enables us to write

ak+1 = ak + µadfa(0)
(

ak + a
∗ − a

opt
k

)

+ µah(ak, k)



We define another system

āk+1 = āk + µadfa(0)āk + µah(āk, k)

We can use the deterministic averaging hovering theorem (DHT)
(see [3] and [1]) to relate these two systems. We check the appli-
cability of this theory by looking at the total perturbation:

p(k, a) =
∑k

i=1

[

dfa(0)
(

a + a∗ − a
opt
i

)

+ h(a, i)
− (dfa(0) + h(a, i))]

=
∑k

i=1 dfa(0)
(

a∗ − a
opt
i

)

which, considering (20), must be bounded, since it is periodic and
drawn from the real numbers. The Lipschitz continuity, which is
also required by the DHT, can be shown with

p(k, a) − p(k, a
′) = 0 ≡ Lp

For the DHT, [1], we also need‖a∗
k+1 − a∗

k‖ ≤ c ∀k and a con-
dition on the initializations. The first holds withc = 0, due to the
fixed point we show stability to,a∗. Assuming the DHT applies,
we have the bound

‖āk+1 − ak+1‖ ≤
2 − αT/µ

1 − αT/µ
µ(Bp + Lph + LpBfT )eλf T

(21)
An important step in applying the deterministic hovering theorem
to get (19), comes the form we chose forα ≡ ‖I + µdfa(0)‖,
which, for smallµ and stable averaged systems is≈ 1 − %µ for
some constant%. Given this information, we can guarantee the
right hand side in (21) isO(µ) by the deterministic hovering theo-
rem. Details for this technique can be found in the hovering theo-
rem section of [3] or [1]. Since we know from the triangle inequal-
ity that

‖ak+1 − a
∗‖ ≤ ‖ak+1 − āk+1‖ + ‖āk+1 − a

∗‖ (22)

we now focus on verifying that the second term in the sum is
bounded. To do so, we can use Theorem 1, consideringh(ak, k)
as a disturbance, bounded using

µa‖h(ak, k)‖ ≤ d ≡ sup
a∈B0(ha)

µa‖h(a, k)‖

Theorem 1 tells us that the second term in (22) is bounded by

‖āk+1 − a
∗‖ ≤ α

k‖ā1 − a
∗‖ +

d

1 − α
(23)

Since we are considering the same initial conditions for both the
averaged system and the un-averaged system, we haveā1 = a1.
Using this fact, and combining our bounds from (21) and (23) us-
ing (22), we have (18)5. Thus, apart from some linearization error,
the first adaptive element converges to within an ball ofa∗ which
can be made arbitrarily small by shrinking the step sizeµa. Mov-
ing on to the second element, using (15) we have

‖bk+1 − b∗(k + 1, a∗)‖ ≤ βra,rb
‖bk − b∗(k, a∗)‖

+‖b∗(k, a∗) − b∗(k + 1, a∗)‖

Defining c = supk ‖b∗(k, a∗) − b∗(k + 1, a∗)‖, and using the
sum of an infinite geometric series gives (19), which proves that
we converge to a ball around the zero-manifold, which is possibly
different from the desired trajectory,bopt = b∗(k, a

opt
k ). To fin-

ish we verify we remained within the balls in which our constants
were valid. We do so using (18) and (19), to get (16) and (17) from
the theorem.̈

5Soε(µa) = the sum of the right hand sides of (21) and (23).
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Fig. 3. Misbehavior in a SFFBAC composed of a power maxi-
mization timing recovery unit followed by a direct adaptive LMS
equalizer.
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Fig. 4. The communications system featured in the misbehavior
example.

4. EXAMPLES AND APPLICATIONS

We explored applications of both theorems to adaptive communi-
cations receivers in [1]. We merely reproduce the results here. Fig-
ure 3 shows misbehavior in a digital communications receiver con-
taining a baud timing recovery unit using a power maximization
algorithm followed by a least mean squares direct adaptive equal-
izer [2]. The top pane shows that the timing recovery’s step size
is too small for it to accurately estimate the fluctuating timing off-
set. The middle pane shows that the equalizer is fluctuating from
its desired values which are constant over time because the syn-
chronized channel is not changing. This fluctuation is due to the
inaccurate timing offset estimate, and the bottom pane shows that
the system is suffering from a periodic increase in mean squared
error (decrease in performance) due to this misbehavior.
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