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Abstract—Operations that combine smaller networks into a
larger network in a manner such that the rate region of the
larger network can be directly obtained from the associated
rate regions of the smaller networks are defined and presented.
The operations are selected to also have the property that the
sufficiency of classes of linear network codes and the tightness
of the Shannon (polymatroid) outer bound are preserved in the
combination. Four such operations are defined, and the classes of
linear codes considered include both scalar and vector codes. It
is demonstrated that these operations enable one to obtain rate
regions for networks of arbitrary size, and to also determine if
some classes of linear codes are sufficient and/or the Shannon
outer bound bound is tight for these networks.

I. INTRODUCTION
Many important practical problems, including efficient in-

formation transfer over networks, the design of efficient dis-
tributed information storage systems, and the design of stream-
ing media systems, have been shown to involve determining
the capacity region of an abstracted network under network
coding. Yan et al.’s celebrated paper [1], together with bounds
on the entropy region, provides a method, in principle, to
calculate inner and outer bounds on the capacity region of
networks under network coding. In addition to determining
the capacity region when an inner and outer bound is shown
to match, other interesting characteristics of the network
can be determined through bound comparison, including the
sufficiency of classes of linear codes to obtain the entire
rate region, and the ability of Shannon-type inequalities to
determine the rate region. Although multiple methods can be
utilized to directly calculate these bounds through polyhedral
projection in this manner [2]–[4], the sheer complexity of the
problem, which involves first expressing polyhedra with very
large inequality and extremal descriptions, then the subsequent
elimination of an exponential number of variables in the
projection step, renders it computationally infeasible beyond
networks with 10s of edges. Hence, while these computational
techniques can render large libraries of difficult to determine
and previously unknown capacity regions of small networks
[5], other techniques must be developed to tackle networks of
larger or arbitrary scale.

Inspired by this observation, in [6], we presented some
embedding operations so that the rate region of an embedded
network can be obtained directly from the rate region of the
larger network. In addition, it was shown that if a smaller
network, for which Fq linear codes do not suffice, is embedded
in a larger network (under the embedding operations defined),
then Fq linear codes will not suffice for the larger network,

either. In this sense, the embedding operations of [6] provides a
method of certifying the insufficiency of linear codes for a net-
work of arbitrary scale without ever having to calculate their
rate regions. Furthermore, following an idealogical program
inspired by the well-quasi ordering theory of the graph minors
project, these embedding operations enables the creation a list
of all smallest forbidden embedding networks [5] so that if a
larger network has one of these forbidden networks embedded
in, this class of codes will not suffice for the larger network.

However, for all networks with arbitrary size N , we can
only certify insufficiency of code classes to exhaust the entire
rate region with the embedding operations presented in [6].
There is no tool yet to certify sufficiency of classes of codes for
networks with arbitrary size, or to determine their associated
capacity regions. This paper will define four combination
operations so that one can obtain the rate region of the
larger network from the associated rate regions of the smaller
networks involved in the combination. In addition to the rate
region relations, if the smaller networks are known to be Fq
codes sufficient or to be determined by the Shannon outer
bound, then the same will be true for the larger network. These
combination operations enable one to harness the database
of rate regions calculated for small networks through the
projection based computational tools to determine the capacity
regions of networks of arbitrary scale. Additionally, they
enable one to investigate properties of a network with arbitrary
size by decomposing (reverse of combination) it into smaller
networks and then checking the associated properties of the
smaller networks. A journal submission which includes both
the embedding and combination operations, together with dis-
cussions in network enumeration and rate region computation,
is available at [7].

II. BACKGROUND
This paper studies the multi-source multi-sink network

coding problems with hyperedges. A network coding problem
in this class, denoted by the symbol A, includes a directed
acyclic hypergraph (V, E) [8] as in Fig. 1, consisting of a set
of nodes V and a set E of directed hyperedges in the form of
ordered pairs e = (v,A) with v ∈ V and A ⊆ V\v. The nodes
V in the graph are partitioned into the set of source nodes S,
intermediate nodes G, and sink nodes T , i.e., V = S ∪G ∪T .
Each of the source nodes s ∈ S will have a single outgoing
edge (s,A) ∈ E . The source nodes in S have no incoming
edges, the sink nodes T have no outgoing edges, and the
intermediate nodes G have both incoming and outgoing edges.



The number of sources will be denoted by |S| = K, and each
source node s ∈ S will be associated with an independent
random variable Ys, s ∈ S, with entropy H(Ys), and an asso-
ciated independent and identically distributed (IID) temporal
sequence of random values. For every source s ∈ S , define
Out(s) to be its single outgoing edge, which is connected to
a subset of intermediate nodes and sink nodes. A hyperedge
e ∈ E connects a source, or an intermediate node to a subset
of non-source nodes, i.e., e = (i,F), where i ∈ S ∪ G and
F ⊆ (G ∪ T \ i). For brevity, we will refer to hyperedges
as edges if there is no confusion. For an intermediate node
g ∈ G, we denote its incoming edges as In(g) and outgoing
edges as Out(g). For each edge e = (i,F), the associated
random variable Ue = fe(In(i)) is a function of all the inputs
of node i, obeying the edge capacity constraint Re ≥ H(Ue).
The tail (head) node of edge e is denoted as Tl(e) (Hd(e)).
For notational simplicity, the unique outgoing edge of each
source node will be the source random variable, Ue = Ys if
Tl(e) = s, denoting ES = {e ∈ E|Tl(e) = s, s ∈ S} to be
the variables associated with outgoing edges of sources, and
EU = E \ ES to be the non-source edge random variables.
For each sink t ∈ T , the collection of sources this sink will
demand will be labeled by the non-empty set β(t) ⊆ S. Thus,
a network can be represented as a tuple A = (S,G, T , E , β),
where β = (β(t), t ∈ T ). For convenience, networks with K
sources and L = |EU | edges are referred as (K,L) instances.

As shown in [5], [6], the rate region of a network A, which is
usually characterized by inequalities relating source rates and
edge capacities, can be expressed in terms of region of entropic
vectors Γ∗N and some network constraints. The expression of
the rate region, as an extension of Theorem 1 in [1], is

Rc(A) = Projr,ω(con(Γ∗N ∩ L13) ∩ L4′5), (1)

where con(B) is the conic hull of B, and Projr,ω(B) is
the projection of the set B on the coordinates

[
rT ,ωT

]T
where r = [Re|e ∈ EU ] and ω = [H(Ys)|s ∈ S]. Further,
Γ∗N and Li, i = 1, 3, 4′, 5 are viewed as subsets of RM ,
M = 2N −1+ |EU |, N = |E| = |ES |+ |EU |, with coordinates
[hT , rT ]T , with h ∈ R2N−1 indexed by subsets of N as is
usual in entropic vectors, r ∈ R|EU | playing the role of the
capacities of edges, and any unreferenced dimensions (e.g. r
in Γ∗N ) are left unconstrained (e.g. r ∈ R|EU | in Γ∗N ). The
Li, i = 1, 3, 4′, 5 are network constraints representing source
independency, intermediate nodes coding, edge capacity con-
straints, sink nodes decoding constraints, respectively:
L1 = {h ∈ RM : hYS = Σs∈ShYs} (2)
L3 = {h ∈ RM : hUOut(i)|UIn(i)

= 0,∀i ∈ G} (3)

L4′ = {(hT , rT )T ∈ R2N−1+|E|
+ : Re ≥ hUe , e ∈ E}(4)

L5 = {h ∈ RM : hYβ(t)|UIn(t)
= 0,∀t ∈ T }. (5)

and we will denote L(A) = L1 ∩ L3 ∩ L4′ ∩ L5.
While the analytical expression determines, in principle, the

rate region of any network under network coding, it is only
an implicit characterization. This is because Γ∗N is unknown
and even non-polyhedral for N ≥ 4. Further, while Γ̄∗N is a
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Figure 1: A general network model A
convex cone for all N , Γ∗N is already non-convex by N = 3,
though it is also known that the closure only adds points at the
boundary of Γ̄∗N . Thus, the direct calculation of rate regions
from (1) for a network with 4 or more variables is infeasible.
On a related note, at the time of writing, it appears to be
unknown by the community whether or not the closure after
the conic hull is actually necessary in (1) (The closure would
be unnecessary if Γ̄∗N = con(Γ∗N ), i.e. if every extreme ray in
Γ̄∗N had at least one point along it that was entropic (i.e. in
Γ∗N ). At present, all that is known is that Γ∗N has a solid core,
i.e. that the closure only adds points on the boundary of Γ̄∗N .),
and the uncertainty that necessitates its inclusion muddles a
number of otherwise simple proofs and ideas. For this reason,
some of the discussion in the remainder of the manuscript will
study a closely related inner bound to Rc(A) as follows

R∗(A) = Projr,ωcon(Γ∗N ) ∩ LA. (6)
In all of the cases where the rate region has been computed
to date these two regions are equivalent to one another.

Again, both Rc(A) and its closely related inner bound
R∗(A) are not directly computable because they depend on the
unknown region of entropic vectors and its closure. However,
replacing Γ∗N with finitely generated inner and outer bounds,
as described in the following corollaries, transforms (1) into
a polyhedral computation problem, which involves applying
some linear constraints onto a polyhedron and then projecting
down onto some coordinates. As described in the introduction
and [2]–[6], replacing Γ∗N with polyhedral inner and outer
bounds, typically from Fq representable matroids and the
Shannon outer bound ΓN , respectively, allows (1) to become
a polyhedral computation problem which involves applying
some constraints onto a polyhedra and then projecting down
onto some coordinates. If the outer and inner bounds on rate
region match, we obtain exact rate region.

As shown in [6], there are two types of inner bounds
obtained from Fq-representable matroids. One is ΓqN , which
is obtained directly from the conic hull of Fq-representable
matroids on N elements, and is associated with scalar codes.
The other inner bound, associated with vector codes, is ΓqN,N ′ ,
obtained by N -partitioning the ground sets of Fq-representable
matroids on N ′ > N elements. As N ′ → ∞, tighter and
tighter inner bounds ΓqN will be obtained. These bounds are

Ro(A) = Projr,ω(ΓN ∩ L(A)) (7)
Rs,q(A) = Projr,ω(ΓqN ∩ L(A)) (8)
Rq(A) = Projr,ω(ΓqN,∞ ∩ L(A)). (9)

III. COMBINATION OPERATION DEFINITIONS
In this section we propose a series of combination oper-

ations relating smaller networks with larger networks in a
manner such that the rate region of the larger network can
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Figure 2: Combination operations on two smaller networks to form
a larger network. Thickly lined nodes (edges) are merged.

be easily derived from those of the smaller ones. In addition,
the sufficiency of a class of linear network codes is inherited
in the larger network from the smaller one. Throughout the
following, the network A = (S,G, T , E , β) is a combination
of two disjoint networks Ai = (Si,Gi, Ti, Ei, βi), i ∈ {1, 2},
meaning S1 ∩S2 = ∅, G1 ∩G2 = ∅, T1 ∩T2 = ∅, E1 ∩E2 = ∅,
and β1(t1) ∩ β2(t2) = ∅,∀t1 ∈ T1, t2 ∈ T2.

The operations we will define will merge network elements,
i.e., sources, intermediate nodes, sink nodes, edges, etc, and
are depicted in Fig. 2. Since each merge will combine one
or several pairs of elements, with each pair containing one
element from A1 and the other from A2, each merge definition
will involve a bijection π indicating which element from the
appropriate set of A2 is paired with its argument in A1.

We first consider the sources merge operation, in which
the merged sources will function as identical sources for both
sub-networks, as shown in Fig. 2a. A sink requiring sources
involved in the merge will require the merged source instead.
Definition 1 (Source Merge (A1.Ŝ = A2.π(Ŝ)) – Fig. 2a):
Merging the sources Ŝ ⊆ S1 from network A1 with
the sources π(Ŝ) ⊆ S2 from a disjoint network A2,
will produce a network A with i) merged sources S =
S1 ∪ S2 \ π(Ŝ), ii) G = G1 ∪ G2, iii) T = T1 ∪ T2, iv)
E = (E1 ∪ E2 \ A) ∪ B, where A = {e ∈ E1 ∪ E2|Tl(e) ∈
Ŝ ∪ π(Ŝ)} includes the edges connected with the sources
involved in the merge, B = {(s,F1 ∪ F2)|s ∈ Ŝ, (s,F1) ∈
E1, (π(s),F2) ∈ E2} includes the new edges connected
with the merged sources, and v) updated sink demands

β(t) =

{
β1(t) t ∈ T1(

β2(t) \ π(Ŝ)
)
∪ π−1

(
π(Ŝ) ∩ β2(t)

)
t ∈ T2 .

Similar to source merge, we can merge sink nodes of
two networks, as demonstrated in Fig. 2b. When two sinks
are merged into one sink, we simply union their input and
demands as the input and demands of the merged sink.

Definition 2 (Sink Merge (A1.T̂ + A2.π(T̂ )) – Fig. 2b.):
Merging the sinks T̂ ⊆ T1 from network A1 with the

sinks π(T̂ ) ⊆ T2 from the disjoint network A2 will produce
a network A with i) S = S1 ∪ S2; G = G1 ∪ G2, ii)
T = T1 ∪ T2 \ π(T̂ ), iii) E = E1 ∪ E2 ∪ A \ B, where
A = {(g2,F1 ∪ F2)|g2 ∈ G2,F1 ⊆ T̂ ,F2 ⊆ T2, (g2, π(F1) ∪
F2) ∈ E2} updates the head nodes of edges in A2 with
new merged sinks, B = {(g2,F2) ∈ E2|F2 ∩ π(T̂ ) 6= ∅}
includes the edges connected to sinks in π((̂T )), and v)
updated sink demands

β(t) =

{
βi(t) t ∈ Ti \ T̂ , i ∈ {1, 2}

β1(t) ∪ β2(π(t)) t ∈ T̂ . (10)

Next, we define intermediate nodes merge. When two
intermediate nodes are merged, we union their incoming and
outgoing edges as the incoming and outgoing edges of the
merged node, respectively, as illustrated in Fig. 2c.
Definition 3 (Intermediate Node Merge (A1.g + A2.π(g))
– Fig. 2c): Merging the intermediate node g ∈ G1 from
network A1 with the intermediate node π(g) ∈ G2 from
the disjoint network A2 will produce a network A with
i) S = S1 ∪ S2, ii) G = G1 ∪ G2 \ π(g), iii) T =
T1 ∪ T2, iv) E = E1 ∪ E2 ∪ A ∪ B \ C \ D, where
A = {(g2,F2 \ π(g) ∪ g)|g2 ∈ G2, (g2,F2 ∪ π(g)) ∈ E2}
updates the head nodes of edges in A2 that have π(g)
as head node, B = {(g,F2)|(π(g),F2) ∈ E2} updates
the tail node of edges in A2 that have π(g) as tail node,
C = {e ∈ E2|Tl(e) = π(g)} includes the edges in A2

that have π(g) as tail node, D = {e ∈ E2|π(g) ∈ Hd(e)}
includes the edges in A2 that have π(g) as head node;
and v) updated sink demands

β(t) =

{
β1(t) t ∈ T1
β2(t) t ∈ T2 (11)

Finally, we define edge merge. As demonstrated in Fig. 2d,
when two edges are merged, one new node and four new
edges will be added to create a "cross" component so that
the transmission will be in the new component instead of the
two edges being merged.
Definition 4 (Edge Merge (A1.e + A2.π(e)) – Fig. 2d):
Merging edge e ∈ E1 from network A1 with edge π(e) ∈ E2
from disjoint network A2 will produce a network A with i)
S = S1 ∪ S2, ii) G = G1 ∪ G2 ∪ g0, where g0 /∈ G1, g0 /∈ G2,
iii) T = T1 ∪ T2, iv) E = (E1 \ e) ∪ (E2 \ π(e)) ∪
{(Tl(e), g0), (Tl(π(e)), g0), (g0,Hd(e)), (g0,Hd(π(e)))}; and
v) updated sink demands given by (11).

It is not difficult to see that this edge merge operation can
be thought of as a special node merge operation. Suppose the
edges being merged are A1.e, A2.π(e). If two virtual nodes
g1, g2 are added on e, π(e), respectively, splitting them each
into two edges, so that e, π(e) go into and flow out g1, g2,
respectively, then, the merge of g1, g2 gives the same network
as merging e, π(e).

IV. RATE REGIONS RESULTING FROM THE OPERATIONS
Here we prove that the combination operations enable the

rate regions of the small networks to be combined to produce
the rate region of the resulting large network, and also preserve
sufficiency of classes of codes and tightness of other bounds.



Theorem 1: Suppose a network A is obtained by merg-
ing Ŝ with π(Ŝ), i.e., A1.Ŝ = A2.π(Ŝ). Then, for l ∈
{∗, q, (s, q), o},

Rl(A) = Proj((Rl(A1)×Rl(A2)) ∩ L0), (12)

with L0 =
{
H(Ys) = H(Yπ(s)),∀s ∈ Ŝ

}
, and the dimen-

sions kept in the projection are (H(Ys), s ∈ S) and
(Re, e ∈ E), where S, E represent the source and edge
sets of the merged network A, respectively.
Remark 1: The inequality description of the polyhedral
cone Proj((P1×P2)∩L0) for two polyhedral cones Pj , j ∈
{1, 2} can be created by concatenating the inequality
descriptions for P1 and P2, then replacing the variable
H(Yπ(s)) with the variable H(Ys) for each s ∈ Ŝ.

Proof: Select any point R ∈ R∗(A). Then there exists a
conic combination of some points inR∗(A) that are associated
with entropic vectors in Γ∗N such that R =

∑
rj∈R∗(A) αjrj ,

where αj ≥ 0,∀j. For each rj , there exist random variables
Y

(j)
S , U

(j)
i , i ∈ E \ e, such that the entropy vector h(j) =[

H(A)
∣∣∣A ⊆

{
Y

(j)
s , U

(j)
i |s ∈ S, i ∈ E

}]
is in Γ∗N , where N

is the number of variables in A. Furthermore, their entropies
satisfy all the constraints determined by A. When decomposing
A into A1,A2, let i.i.d. copies of variables Y (j)

s , s ∈ Ŝ work
as sources π(Ŝ) ⊆ S2. The associated edges connecting Ŝ and
nodes in G2 will then connect π(Ŝ) and nodes in G2. Then the
random variables {Y (j)

s , U
(j)
i |s ∈ S1, i ∈ E1}, {Y

(j)
s , U

(j)
i |s ∈

S2, i ∈ E2} will satisfy the network constraints determined by
A1,A2, and also L0. Thus, R ∈ Proj((R∗(A1)×R∗(A2)) ∩
L0). Similarly, if R is achievable by Fq codes, vector or scalar,
the same code applied to the part of A that is A1,A2 will
achieve R1,R2, respectively. Putting these together, we have
Rl(A) ⊆ Proj((Rl(A1)×Rl(A2)) ∩ L0), l ∈ {∗, q, (s, q)}.

Next, if we select two points R1 ∈ R∗(A1), R2 ∈ R∗(A2)
such that H(Ys) = H(Yπ(s)),∀s ∈ Ŝ, then there exist conic
combinations R1 =

∑
ri,j∈R∗(Ai) αi,jri,j for i = 1, 2, and

for each ri,j there exist a set of variables associated with
sources and edges. Since H(Ys) = H(Yπ(s)) and sources
are independent and uniformly distributed, we can let the
associated variables Y

(j)
s and Y

(j)
π(s) be the same variables.

Then, after combination, the entropy vector of all variables
{Y (j)

s , U
(j)
e |s ∈ S, e ∈ E} will be in Γ∗N . Furthermore, their

entropies, together with the rate vectors from R1,R2, will
satisfy all network constraints of A, and there will be an
associated point r = r1 × r2 with L0. Using the same conic
combination, we will find the associated point R = R1×R2∩
L0. Hence, Proj((R∗(A1) × R∗(A2)) ∩ L0) ⊆ R∗(A). Now
suppose there exists a sequence of network codes for A1 and
A2 achieving R1,R2. By using the same source bits as the
source inputs for s in A1 and π(s) in A2 for each s ∈ Ŝ, we
have the same effect as using these source bits as the inputs
for s in the source merged A and achieving the associated
rate vector R, implying R ∈ Rl(A), l ∈ {q, (s, q)}, and
hence Rs,q(A) ⊇ Proj((Rs,q(A1) × Rs,q(A2)) ∩ L0) and
Rq(A) ⊇ Proj((Rq(A1)×Rq(A2)) ∩ L0). Together with the
statements above, this proves (12) for l ∈ {∗, q, (s, q)}.

Furthermore, any point R ∈ Ro(A), is the projection of
some point [h, r] ∈ ΓN ∩LA, where h ∈ ΓN and r = [Re|e ∈
E ]. Because the Shannon inequalities and network constraints
in ΓN ∩LA form a superset (i.e., include all of) of the network
constraints in ΓN ∩ L(Ai), the subvectors [hi, ri] of [h, r]
associated only with the variables in Ai (with Yπ(s) being
recognized as Ys for all s ∈ Ŝ) are in ΓNi ∩ L(Ai) and obey
L0, implying R ∈ Proj((Ro(A1)×Ro(A2))∩L0), and hence
Ro(A) ⊆ Proj((Ro(A1)×Ro(A2)) ∩ L0).

Next, if we select two points R1 ∈ Ro(A1), R2 ∈ Ro(A2)
such that H(Ys) = H(Yπ(s)),∀s ∈ Ŝ, then there exists
[hi, ri] ∈ ΓNi ∩L(Ai), where hi ∈ ΓNi and ri = [Re|e ∈ Ei],
such that Ri = Projri,ωi [h

i, ri], i ∈ {1, 2} with h1Xs =

h2Xπ(s)
for all s ∈ Ŝ. Define h whose element associated with

the subset A ofN = S∪E is hA = h1A∩N1
+h2A∩N2

−h2A∩π(Ŝ)
where Ni = Si ∪ Ei, i ∈ {1, 2}. By virtue of its creation this
way, this function is submodular and h ∈ ΓN . Since the two
networks are disjoint, the list of equalities in L3(A) is simply
the concatenation of the lists in L3(A1) and L3(A2), each of
which involved inequalities in disjoint variables N1 and N2,
and the same thing holds for L4′ with consideration of ri.
Furthermore, since hi ∈ L2(Ai) and h1Ys = h2Yπ(s)

, s ∈ Ŝ,
h obeys L2(A). The definition of h, together with hi ∈
L1(Ai), i ∈ {1, 2} and h1Ys = h2Yπ(s)

, s ∈ Ŝ, implies
that h ∈ L1(A). Finally h1 ∈ L(A1) and h2 ∈ L(A2)
imply h ∈ L5(A). Putting these facts together we observe
that [h, r] ∈ ΓN ∩ LA, so R ∈ Ro(A), implying Ro(A) ⊇
Proj((Ro(A1)×Ro(A2)) ∩ L0). �

Theorem 2: Suppose a network A is obtained by merging
sink nodes T̂ with π(T̂ ), i.e., (A1.T̂ + A2.π(T̂ )). Then

Rl(A) = Rl(A1)×Rl(A2), l ∈ {∗, q, (s, q), o} (13)

with the index on the dimensions mapping from {e ∈
E2|Hd(e) ∈ π(T̂ )} to {e ∈ E|Hd(e) ∈ T̂ ,Tl(e) ∈ G2}.
Proof: Consider a point R ∈ Rl(A) with conic combination
of R =

∑
rj∈Rl(A) αl,jrl,j , where αl,j ≥ 0 for any j

and l ∈ {∗, q, (s, q), o}. Each rl,j has associated random
variables or the associated codes. Due to the independence
of sources in networks A1,A2, and the fact that their sources
and intermediate nodes are disjoint, the variables arriving at
a merged sink node from A1 will be independent of the
sources in A2 and the variables arriving at a merged sink
node from A2 will be independent of the sources in A1.
In particular, Shannon type inequalities imply the Markov
chains H(YS1 |UIn(t)∩E1 ,UIn(t)∩E2) = H(YS1 |UIn(t)∩E1) and
H(YS2 |UIn(t)∩E1 ,UIn(t)∩E2) = H(YS2 |UIn(t)∩E2) for all
t ∈ T (even if the associated “entropies” are only in ΓN
and not necessarily Γ̄∗N ). This then implies, together with
the independence of the sources, that H(Yβ(t)|UIn(t)) =
H(Yβ(t)∩S1 |UIn(t)∩E1) + H(Yβ(t)∩S2 |UIn(t)∩E2), showing
that the constraints in L5(A) imply the constraints in L5(A1)
and L5(A2). Furthermore, given the disjoint nature of A1 and
A2, the constraints in Li(A), are simply the concatenation
of the constraints in Li(A1) and Li(A2), for i ∈ {2, 3, 4′}.
Furthermore, the joint independence of all of YS1 ,YS2 imply



the marginal independence of the collections of variables YS1
and YS2 , so that L1(A) implies L1(Ai), i ∈ {1, 2}. This shows
that rl,j ∈ r1l,j × r2l,j and further R ∈ Rl(A1)×Rl(A2), and
hence Rl(A) ⊆ Rl(A1)×Rl(A2), l ∈ {∗, q, (s, q), o}.

Next, consider two points Ri ∈ Rl(Ai), i ∈ {1, 2} for
any l ∈ {q, (s, q), o}. By definition these are projections
of [hi, ri] ∈ ΓqNi,∞ ∩ L(Ai), [hi, ri] ∈ ΓqNi ∩ L(Ai),
[hi, ri] ∈ ΓNi ∩ L(Ai), respectively, for i ∈ {1, 2},
where hi ∈ ΓNi and ri = [Re|e ∈ Ei]. Define
h with value associated with subset A ⊆ N of
hA = h1A∩N1

+ h2A∩N2
, then it is easily verified that

the resulting [h, r1, r2] ∈ ΓqN,∞ ∩ LA, [h, r1, r2] ∈ ΓqN ∩ LA,
[h, r1, r2] ∈ ΓN ∩ LA, respectively, (simply use the same
codes from A1 and A2 on the corresponding parts of A). Since
R = Projω,r[h, r1, r2], we have proven R ∈ Rl(A), and
hence that Rl(A) ⊇ Rl(A1)×Rl(A2). Further, for two points
Ri ∈ R∗(Ai), i ∈ {1, 2}, there exist a conic combination of
rij , Ri =

∑
rij∈R∗(Ai) α

i
jr
i
j , with associated random variables{

Y
(j)
s , U

(j)
i |s ∈ S1, i ∈ E1

}
,
{
Y

(j)
s , U

(j)
i |s ∈ S2, i ∈ E2

}

satisfying the network constraints determined by
A1,A2. Due to the independence of sources and
disjoint of edge variables, the union of variables in
A1,A2 will satisfy the network constraints in the
merged A. With the same conic combinations, we
have R =

∑
rij∈R∗(Ai)[α

1
jr

1
j , α

2
jr

2
j ] ∈ R∗(A). Thus,

R∗(A) ⊇ R∗(A1)×R∗(A2). �

Theorem 3: Suppose a network A is obtained by merging
g and π(g), i.e., A1.g + A2.π(g). Then

Rl(A) = Rl(A1)×Rl(A2), l ∈ {∗, q, (s, q), o} (14)
with dimensions/ indices mapping from {e ∈ E2|Hd(e) =
π(g)} to {e ∈ E|Hd(e) = g,Tl(e) ∈ G2} and from {e ∈
E2|Tl(e) = π(g)} to {e ∈ E|Tl(e) = g,Hd(e) ∈ G2}.
Proof: Consider a point R ∈ Rl(A) for any l ∈ {∗, q, (s, q)}
and all random variables associated with each component rl,j
in the conic combinations R =

∑
rj∈Rl(A) αl,jrl,j , where

αl,j ≥ 0 for any j and l ∈ {∗, q, (s, q), o}. The associated
variables satisfy Li(A), i = 1, 3, 4′, 5. Partition the incoming
edges of the merged node g in A, In(g), up into In1(g) =
In(g)∩E1 the edges from A1, and In2(g) = In(g)\ In1(g), the
new incoming edges resulting from the merge. Similarly, parti-
tion the outgoing edges Out(g) up into Out1(g) = Out(g)∩E1
and Out2(g) = Out(g) \ Out1(g). The L3 constraints dictate
that there exist functions fe such that for each e ∈ Out(g),
Ue = fe(UIn1(g), UIn2(g)). Define the new functions f ′e via

f ′e(UIn1(g), UIn2(g)) =

{
fe(UIn1(g),0) e ∈ Out1(g)
fe(0, UIn2(g)) e ∈ Out2(g)

(15)

i.e., set the possible value for the incoming edges from the
other part of the network (possibly erroneously) to a particular
constant value among their possible values – let’s label it 0.
The network code using these new functions f ′e will utilize the
same rates as before. The constraints and the topology of the
merged network further dictated that UIni(g) were expressible
as a function of Si, i ∈ {1, 2}. In the remainder of the network
(moving toward the sink nodes) after the merged nodes, at no
other point is any information from the sources in the other

part of the network encountered, and the decoders at the sink
nodes in T2 need to work equally well decoding subsets of S2,
regardless of the value of S1. Since the erroneous value for the
UIn1(g) used for f ′e, e ∈ Out2(g) was still a valid possibility
for some (possible other) value(s) of the sources in S1, the
sinks must still produce the correct values for their subsets of
S2. A parallel argument for T1 shows that they still correctly
decode their sources, which were subsets of S1, even though
the fes were changed to f ′es. Note further that (15) will still
be scalar/vector linear if the original fes were as well.

However, since the fe′s no longer depend on the other half
of the network, the resulting code can be used as separate
codes for A1 and A2, given the associated rate points Ri by
keeping the elements in R associated with Ai, i ∈ {1, 2} (or
the associated rate points ril,j by keeping elements in rl,j)
in the natural way, implying that R ∈ Rl(A1) × Rl(A2).
This then implies that Rl(A) ⊆ Rl(A1) × Rl(A2) for all
l ∈ {∗, q, (s, q)}. The opposite containment is obvious, since
any rate points or codes for the two networks can be utilized
in the trivial manner for the merged network. This proves (14)
for l ∈ {∗, q, (s, q)}.

Next, consider any pair Ri ∈ Ro(Ai) i ∈ {1, 2}, which
are, by definition, projections of some [hi, ri] ∈ ΓNi ∩L(Ai),
where hi ∈ ΓNi and ri = [Re|e ∈ Ei], i ∈ {1, 2}. Defining
h whose element associated with the subset A ⊂ N is hA =
h1A∩N1

+h2A∩N2
, where the intersection respects the remapping

of edges under the intermediate node merge, we observe that
[h, r1, r2] ∈ ΓN ∩ LA, and hence its projection R ∈ Ro(A),
proving Ro(A) ⊇ Ro(A1)×Ro(A2).

Finally, consider a point R ∈ Ro(A), which is a projection
of some [h, r] ∈ ΓN ∩ LA, where h ∈ ΓN and r = [Re|e ∈
E ]. For every A ⊆ Ni, define hiA = hA∪S3−i − hS3−i , and
define h′ with h′A = h1A∩N1

+ h2A∩N2
and R′ = projω,rh

′.
We see that hi ∈ L(Ai), i ∈ {1, 2}, because conditioning
reduces entropy and entropy is non-negative, but all of the
conditional entropies at nodes other than g were already zero,
while at g, the conditioning on the sources from the other
network will enable the same conditional entropy of zero since
the incoming edges from the other network were functions of
them. This shows that R′ ∈ Ro(A1) × Ro(A2). Owing to
the independence of the sources projωh = projωh

′, while
projrh ≥ projrh

′ due to the fact that conditioning reduces
entropy. The coordinate convex nature then implies that R ∈
Ro(A1)×Ro(A2) showing that Ro(A) ⊆ Ro(A1)×Ro(A2)
and completing the proof. �

Theorem 4: Suppose a network A is obtained by merging
e and π(e), i.e., A1.e+A2.π(e). Then, for l ∈ {∗, q, (s, q), o},
Rl(A) = Proj\{e,π(e)}((Rl(A1)×Rl(A2)) ∩ L′0), (16)

with L′0 =
{
R(Tl(j),g0) ≥ Rj , R(g0,Hd(j)) ≥ Rj , j ∈ {e, π(e)}

}
,

and projection dimension \{e, π(e)} means projecting
out dimensions associated with e, π(e). Furthermore,
R(Aq) × R(Aq) and L′0 are viewed in the dimension of
|N1| + |N2| + 4 with assumption that all dimensions not
shown are unconstrained.
Proof: As observed after the definition of edge merge, one can



think of edge merge as the concatenation of two operations: i)
split e in A1 and π(e) in A2 each up into two edges with a new
intermediate node (g and π(g), respectively) in between them,
forming A′1 and A′2, respectively, followed by ii) intermediate
node merge of A′1.g+A′2.π(g). It is clear that L′0 describes the
operation that must happen to the rate region of Ai, i ∈ {1, 2}
to get the rate region of A′i, because the contents of the old
edge e or π(e) must now be carried by both new edges after
the introduction of the new intermediate node. Applying Thm.
3 to A′1 and A′2 yields (16). �

With Theorems 1 – 4, one can easily derive the following
corollary regarding the preservation of sufficiency of linear
network codes and tightness of Shannon outer bound.
Corollary 1: Let network A be a combination of networks
A1,A2 via one of the combination operations. If Fq vector
(scalar) linear codes suffice or the Shannon outer bound
is tight for both A1,A2, then the same will be true for A.
Equivalently, if Rl(Ai) = R∗(Ai), i ∈ {1, 2} for some l ∈
{o, q, (s, q)} then also Rl(A) = R∗(A).

V. EXPERIMENTAL RESULTS

In this section, we first present some experimental results
on numbers of non-isomorphic networks. Then we utilize an
example to show the rate region relations and the preservation
properties resulting from the operations presented in §III.

It is not difficult to see a minimal network instance with
simplest connected structure, should obey the following con-
straints:

Source minimality:
(C1) all sources cannot be only directly connected with sinks:

∀s ∈ S, Hd(Out(s)) ∩ G 6= ∅;
(C2) sinks do not demand sources to which they are directly

connected: ∀s ∈ S, t ∈ T , if t ∈ Hd(Out(s)) then
s /∈ β(t);

(C3) every source is demanded by at least one sink: ∀s ∈ S ,
∃ t ∈ T such that s ∈ β(t) ;

(C4) sources connected to the same intermediate node and
demanded by the same set of sinks should be merged:
@s, s′ ∈ S such that Hd(Out(s)) = Hd(Out(s′)) and
γ(s) = γ(s′), where γ(s) = {t ∈ T |s ∈ β(t)};
Node minimality:

(C5) intermediate nodes with identical inputs should be
merged: @ k, l ∈ G such that In(k) = In(l);

(C6) intermediate nodes should have nonempty inputs and
outputs, and sink nodes should have nonempty inputs:
∀g ∈ G, t ∈ T , In(g) 6= ∅,Out(g) 6= ∅, In(t) 6= ∅;
Edge minimality:

(C7) all hyperedges must have at least one head: @e ∈ E such
that Hd(e) = ∅;

(C8) identical edges should be merged: @e, e′ ∈ E with
Tl(e) = Tl(e′), Hd(e) = Hd(e′);

(C9) intermediate nodes with unit in and out degree, and whose
in edge is not a hyperedge, should be removed: @e, e′ ∈
E , g ∈ G such that In(g) = e, Hd(e) = g, Out(g) = e′;
Sink minimality:

(C10) there must exist a path to a sink from every source wanted
by that sink: ∀t ∈ T , β(t) ⊆ σ(t), where σ(t) = {k ∈
S|∃ a path from k to t};

(C11) every pair of sinks must have a distinct set of incoming
edges: ∀t, t′ ∈ T , i 6= j, In(t) 6= In(t′);

(C12) if one sink receives a superset of inputs of a second sink,
then the two sinks should have no common sources in
demand: If In(t) ⊆ In(t′), then β(t) ∩ β(t′) = ∅;

(C13) if one sink receives a superset of inputs of a second sink,
then the sink with superset input should not have direct
access to the sources that demanded by the sink with
subset input: If In(t) ⊆ In(t′) then t′ /∈ Hd(Out(s)) for
all s ∈ β(t).
Connectivity:

(C14) the direct graph associated with the network A is weakly
connected.

To better highlight this definition of network minimality,
we explain the conditions involved in greater detail. The first
condition (C1) requires that a source cannot be only directly
connected with some sinks, for otherwise no sink needs to
demand it, according to (C2) and (C10). Therefore, this source
is extraneous. The condition (C2) holds because otherwise the
demand of this sink will always be trivially satisfied, hence
removing this reconstruction constraint will not alter the rate
region. Note that other sources not demanded by a given sink
can be directly available to that sink as side information (e.g.,
as in index coding problems), as long as condition (C13)
is satisfied. The condition (C3) indicates that each source
must be demanded by some sink nodes, for otherwise it is
extraneous and can be removed. The condition (C4) says
that no two sources have exactly the same paths and set of
demanders (sinks requesting the source), because in that case
the network can be simplified by combining the two sources
as a super-source. The condition (C5) requires that no two
intermediate nodes have exactly the same input, for otherwise
the two nodes can be combined. The condition (C6) requires
that no nodes have empty input except the source nodes,
for otherwise these nodes are useless and extraneous from
the standpoint of satisfying the network coding problem. The
condition (C7) requires that every edge variable must be in
use in the network, for otherwise it is also extraneous and can
be removed. The condition (C8) guarantees that there is no
duplication of hyperedges, for otherwise they can be merged
with one another. The condition (C9) says that there is no
trivial relay node with only one non-hyperedge input and out-
put, for otherwise the head of the input edge can be replaced
with the head of the output edge. The condition (C10) reflects
the fact that a sink can only decode the sources to which it
has at least one path of access, and any demanded source not
meeting this constraint will be forced to have entropy rate of
zero. The condition (C11) indicates the trivial requirement that
no two decoders should have the same input, for otherwise
these two decoders can be combined. The condition (C12)
simply stipulates that implied capabilities of sink nodes are
not to be stated, but rather inferred from the implications. In
particular, if In(t) ⊆ In(t′), and β(t)∩β(t′) 6= ∅, the decoding
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Figure 3: A large network and its capacity region created with the operations in this paper from the 5 networks below it.

ability of β(t) is implied at t′: pursuing minimality, we only
let t′ demand extra sources, if any. The condition (C13) is also
necessary because the availability of s is already implied by
having access to In(t), hence, there is no need to have direct
access to s.

By using our enumeration tool [7] with consideration of
the conditions above, we obtained the list of non-isomorphic
(symmetry removed) network instances for different network
sizes with K + L ≤ 5. We give the numbers of network
instances as following

(K,L) |Z| |Ẑ|
(1,2) 4 7
(1,3) 132 749
(1,4) 18027 420948
(2,1) 1 1
(2,2) 333 1 270
(2,3) 485 890 5 787 074
(3,1) 9 31
(3,2) 239 187 2 829 932
(4,1) 536 10478
Total 744 119 9 050 490

where |Ẑ|, |Z| represents the number of isomorphic networks
and non-isomorphic networks, respectively. As [7] shows, for
all networks with K + L ≤ 5, we proved that Shannon outer
bound is tight and linear codes suffice.

Next, we give an example to demonstrate the rate region
relations and achieving codes from combination operations.
Example 1: A (6, 15) network instance A can be obtained
by combining five smaller networks A1, . . . ,A5, of which

the representations are shown in Fig. 3. The combination
process is I) A12 = A1.{t1, t2} + A2.{t1′ , t2′}; II) A123 =
A12.e4 + A3.e7 with extra node g0 and edges e4′ , e7′ ; III)
A45 = A4.g10 + A5.g10′ ; IV) A = A123.{X1, . . . , X6} =
A45.{X1′ , . . . , X6′}. From the software calculations and
analysis [9], one obtains the rate regions below the 5
small networks. According to the theorems in §IV, the rate
region R∗(A) for A obtained from R∗(A1), . . . ,R∗(A5), is
depicted next to it. Additionally, since calculations showed
binary codes and the Shannon outer bound suffice for
Ai, i ∈ {1, . . . , 5}, Corollary 1 dictates the same for A.

Note that, by repeating one or more combination operations,
we can calculate rate regions and tell sufficiency property
for many instances with large network sizes. If we integrate
embedding operations into the process, as shown in [7], more
and more solvable networks can be obtained.

VI. CONCLUSION
This paper introduced several operations for combining

smaller networks into bigger networks with the property that
the rate region of the larger network could be determined from
the rate regions of the smaller networks. Additionally, if certain
classes of linear codes suffice (or Shannon outer bound is tight)
for the smaller networks, then the same class of codes will
suffice (or Shannon outer bound will be tight) for the combined
larger network. The operators create a way to put together
small computationally derived rate regions to get rate regions
of networks of arbitrary scale. Additionally, they enable one to
determine rate regions and the sufficiency of classes of codes
to exhaust it for a larger network by decomposing it (reversing
the operations) into smaller networks, then investigating the



same properties of the smaller component networks.
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