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N ! L234) ! L15)) [1]

Network constraints:

1. Representable matroids give both inner bound onΓ∗
N and optimal codes

to achieve the rate region obtained from this inner bound

2. A linear code construction from representations of matroids

3. Inspired by double description method, a new efficient computation ap-
proach is proposed to calculate rate regions, especially for inner bound

4. For MDCS [4], rate regions for the 100 2-level and 3-level 3-encoder
conÞgurations are obtained, including some results not previously known

5. Binary linear codes suffice for the entire rate regions for all 100 cases

6. Computer-aided proofs are realistic in network information theory pro-
vided we exploit the special structure of the problems.Comparison with DFZÕs work in [2]

Applying network constraint
to any polyhedral bound ⊆ ! N : O(n)

6. Computed rate region of an MDCS [4] example 

! bin
N : binary rep. matroid inner bound;

! rep
N : rep. matroid inner bound;

! mat
N : matroid inner bound;

! vec,q
N (N �,P ) : vector GF (q)-representable inner bound;

! space
N : subspace arrangements inner bound;

ø! !
N : closure of! !

N ;
! N : Shannon outer bound.
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R1 ! H (X )

R2 + R3 ! H (X ) + H (Y )

R1 + R3 ! H (X ) + H (Y )

R1 + R2 ! H (X ) + H (Y )

H (X ) = 1
H (Y ) = 2R out =

R in from
Γbin

5,(6)

1. Express given point in the rate 
region as conic combination of 

(projected) matroid ranks

2. Approximate coefÞcients using 
rationals, block length of sources 

= LCM of the denominators

4. Find partition of source digits 
and corresponding basic solutions

5. Arrange basic solutions with 
proper repetition times in a block 

diagonal matrix

6. Rearrange the order of source 
vector and columns of the solution

3. LCM    each rational coefÞcient 
= repetition times of associated 

basic solution

!

• Consider (H(X), H(Y ), H(U1), H(U2), H(U3))
(1, 2, 3

2 ,
3
2 ,

3
2 ) = 1

2 (1, 1, 1, 1, 1) + 1
2 (1, 3, 2, 2, 2).

¥ Coefficients are 1
2 , 1

2 . Block length =
LCM of denominators = 2.

¥ Repeat the solution C1 associated with
(1, 1, 1, 1, 1) once and solutionC2 associ-
ated with (1 , 3, 2, 2, 2) once.

• Rearrange columns ofC to get U1U2U3 =

v !





1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1
0 0 1 0 1 0 0 0 0




.

¥ Source vectorv = [ X 1, X 2, Y1, Y2, Y3, Y4]. One partition of v is {{ X 1, Y3} , { X 2Y1Y2Y4}}
with Þrst element mapped to C1 and second mapped toC2, where we chooseC1 =

!
1 1 0
0 1 1

"
and C2 =

#

$
$
%

1 0 0 0 1 0
0 0 1 0 1 0
0 1 0 0 0 1
0 0 0 1 0 1

&

'
'
( .

¥ Final solution C =
!

C1 O
O C2

"
.

! bin
N

! rep
N

! mat
N

! space
N

Γ
!
N

! N

N = 5 , 6, 7

Γvec,P
N (N ! )

Applying a generic equality
constraint to a polyhedral cone: O(n)

¥ What algorithms are most e! ective for computing rate regions
that are achievable by linear codes for multisource multicast
netwroks?

¥ Rank of representable matroid = scaled entropic vector: u ! U(GF (q)1×M ),
create X = uA " hA = r (A ) log2 q,A # X , where A is the matrix representa-
tion and r (A ) is the linear rank of associated columns in A .

¥ Inner bound of ! ∗
N : ! q

N , conic hull of GF (q)-rep. matroids.

¥ Projecting rep. matroid: ! vec,P
N (N �) "

P
N ! q

N � # ! space
N , where N � > N and P is a

partition of { 1, . . . , N �} with |P | = N .


