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Abstract
SMART Grid On Chip: Infusing intelligence to on-chip energy management

Divya Pathak
Advised by Prof. Ioannis Savidis

Scaling petaflop supercomputers to exascale requires a 500x increase in FLOPS,

but at the cost of only a 3x increase in the total power consumption. In addition,

computing systems implemented with nanometer scale multi-gate field effect transis-

tors are increasingly integrating heterogeneous cores, GPUs, and accelerators. The

power delivery and energy management of such complex chip multi-processors (CMP)

is, therefore, a challenging research task spanning across the system, architecture, cir-

cuits, and device stack.

A set of on-chip energy management techniques that are similar to supply side and

demand side management in a SMART grid is developed. The techniques span the

circuit and system layers. Intelligence is introduced in the operation of the on-chip

power distribution network (PDN) to sense variations in the computational activ-

ity across cores and reconfigure the PDN to optimize the energy efficiency. A cir-

cuit level technique that improves the energy efficiency through the implementation

of under-provisioned on-chip voltage regulators (OCVRs) interconnected through a

switch network is developed. An operating system level task scheduling heuristic

distributes the workloads on the cores such that the required reconfiguration of the

PDN is minimized. SPICE simulations indicate up to a 44% reduction in the energy

consumption of the CMP.
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An evolving on-chip power delivery methodology where reference voltages of the

OCVRs are controlled through a particle swarm optimizer (PSO) is developed. The

PSO negates the effects of transistor aging and process, temperature, and power sup-

ply noise induced variation in the load circuit, OCVRs, and on-chip timing sensors.

The simulation results indicate an average reduction of 35% and 5% in, respectively,

the power consumption and operating temperature of the voltage domains. In addi-

tion, the end of life of the voltage domain is prolonged due to a mean reduction in

the aging induced Vth shift of 40%.

Novel circuit techniques to detect and set the power supply voltages and suppress

power supply noise are developed. The run-time circuit techniques for power supply

voltage detection and clamping are demonstrated for a heterogeneous 3-D integrated

circuit through SPICE simulation of a device plane in a 22 nm technology and a

power plane in a 45 nm technology. The power supply voltages of less than 1 V are

successfully set and provided as a reference to an OCVR within 500 ns of initiating an

active state and with variation of less than 1% in the reference voltage. Noise on the

power supply is suppressed through the use of hyperabrupt p-n junction varactors

as on-chip decoupling capacitors. The voltage droops and overshoots on the on-

chip power distribution network are suppressed by up to 60% as compared to metal-

insulator-metal (MIM) or deep trench decoupling capacitors of the same capacitance.

With approximately 42% and 15% of the data center power consumed by, re-

spectively, the processors and the cooling system, the run-time energy management

techniques developed in this thesis have significant potential to reduce the running

cost of exascale data centers.

Abstract
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Chapter 1: Introduction

“All of the technical reports on exascale systems identify the power consumption of

the computers as the single largest hardware research challenge."

– Steve Ashby, Pacific Northwest National Laboratory

With an aggressive goal of 20 MW for exaflop computing set by the U.S. Depart-

ment of Energy (DOE) [1, 2], energy efficient computing across the system, archi-

tecture, circuits, and technology stack has emerged as a primary research objective.

Scaling current petaflop supercomputers to exascale requires a 500x increase in com-

putational efficiency, but with an increase in the total power consumption [1] of only

3x. The design criteria for computing devices has evolved not only based on the end

application but also on technology and power constraints. The evolution of design

objectives with semiconductor fabrication nodes is shown in Fig. 1.1 [3]. The pri-

mary objective is the improved energy efficiency of computing devices ranging from

enterprise class systems to internet of things (IoT) components.

The first decade of the 21st century saw an end to Dennard scaling [4,5], which was

a primary driving factor of performance based scaling of computing devices built on

metal-oxide-semiconductor field-effect transistor (MOSFET) technology. The increas-

ing leakage power of MOSFET devices restricted the ability to improve performance

by increasing the clock frequency of the circuit. The result has been an evolution of
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Figure 1.1: Technology trends for computing devices realized with silicon based
semiconductor technology [3].

the circuit, architecture, and associated system and application software towards pro-

cessor parallelism. The second decade of the 21st century is experiencing a weakening

of Moore’s law [6] as fabrication processes are rapidly approaching the fundamental

physical limits of the transistor dimensions and there is an excessive power density

when integrating a few billion transistors. The exponential rise in transistor counts

attributed to Moore’s law and the flattening of the curves for clock frequency, per-

formance per clock cycle, and power consumption due to the end of Dennard scaling

are shown in Fig. 1.2. As shown, the power consumption of silicon transistors has

become the prime concern when designing an integrated circuit.

Systems for applications ranging from high-performance computing [10, 11], data

Chapter 1: Introduction
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Figure 1.2: Design trends in transistor count, performance, frequency, power,
and the number of cores (1970-2018). Original data up to the year 2010 is
attributed to [2] and from 2010-2015 to [7]. New data is added from 2015 to
2018 [8, 9].

centers [12], and neuromorphic computing [13] to low cost IoT sensor nodes are in-

creasingly integrating heterogeneous cores and accelerators to achieve higher per-

formance while limiting power consumption. The methods implemented by these

systems to manage the power consumption and improve the energy efficiency are de-

scribed in Chapter 4 along with the need for cross-layer power management, which

describes techniques that span across the device, circuits, architecture, and system

layers.

The analogy with SMART grid technologies for the energy management tech-

niques developed in this dissertation is described in Section 1.1. The outline of the

dissertation, research statement, and objectives are presented in Section 1.2.

Chapter 1: Introduction
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1.1 SMART GRID based on-chip power management

The electric grid is amongst the largest man made systems. For instance, the

U.S. electric grid consists of over 9,000 electric generation units, over 600,000 miles

of transmission lines, and a generation capacity in excess of one trillion Watts [14].

The power distribution on the electric grid suffers from large economic loss due to

the unpredictable consumption of electricity by the end user as well as environmental

and other unforeseen disruptions. The integration of renewable sources of energy

has introduced stochastic behavior in power generation. The electric grid has been

modernized drastically in the last two decades due to advancements in electronic

communication technologies. The modernized grid with two way information flow

between the power generators and end users is described as the SMART grid [14].

Smart sensors distributed across the grid assess grid stability and monitor the pattern

of power consumption by the end-users. Automated feeder switches re-route power in

case of grid faults, and battery systems store sufficient energy to maintain a micro-grid

that includes both renewable and non-renewable sources of generated power [14].

The power management techniques implemented in a SMART grid are classified

as either supply side or demand side management. A mismatch between power de-

mand and power supply is the primary cause of power outages and revenue loss due to

over production. The unit commitment problem states that the generation of power

is optimized to sustain the stochastic power demand of the system while maximiz-

ing the profit to the utility company, end user, and other economic players in the

SMART grid. Switch reconfiguration to re-route electricity either to isolate a faulty

Chapter 1: Introduction
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line or provide additional power to a geographic area are considered supply side man-

agement techniques. Reactive power optimization, commonly know as Voltage/VAR

(voltage-ampere reactive) control, is crucial to maintain the system reliability and

voltage levels throughout the SMART grid. The run-time adjustment of generator

voltages, transformer taps, and shunt capacitors controls the reactive power distribu-

tion and the voltage profiles on the grid. Voltage/VAR optimization is a supply side

management technique. Offsetting power consumption during the anticipated peak

hours to reduce the peak load on the grid is a demand side management technique.

Electric appliances in residential and industrial units are scheduled to run at off-peak

hours to not only reduce the peak load but also to lower cost as electricity during

off-peak hours is cheaper due to less demand.

In this dissertation a set of on-chip energy management techniques are developed

that are similar to supply side and demand side management in a SMART grid. The

classification of the developed techniques, which are enclosed by a dashed box, is

shown in Fig. 1.3.

1.1.1 Supply side management

The primary contributions on supply side management developed as part of this

dissertation are described in this subsection. A reconfigurable power delivery network

with distributed on-chip voltage regulators is described in Chapter 5. Each of the on-

chip voltage regulators is provisioned for a maximum output current rating meeting

the average demand of the load circuit.

Hyperabrupt PN junction diodes are proposed for on-chip decoupling capacitance

Chapter 1: Introduction
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Figure 1.3: The run-time, on-chip energy management techniques developed
analogous to SMART Grid techniques.

in Chapter 7. The voltage controlled capacitance offered by hyperabrupt diodes

improves the suppression of clock induced power supply noise by 40% on average as

compared to other state of the art on-chip noise mitigation schemes.

Circuit techniques to auto-detect and auto-set the power supply voltage of a given

domain are described in Chapter 8. Although applicable to 2-D integrated circuits

(ICs), the techniques are of particular use for 3-D heterogeneous ICs, where disparate

dies are fabricated in different foundries and the technology specific information may

not be disclosed to the die packaging facility.

An evolvable on-chip power delivery system that allows for programmability of

the power supply voltage at each on-chip voltage regulator (OCVR) is described in

Chapter 9. The fine grained tuning of the output voltages of the OCVRs compensates

for the negative effects of aging, process variation, and power supply noise on the load

circuit and OCVR.

Chapter 1: Introduction
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1.1.2 Demand side management

The primary contribution on demand side management includes a workload sched-

uler to optimally assign tasks to the cores in a CMP. The scheduler is aware of the

power delivery network and the peak current ratings of the OCVRs serving each core

in the CMP. The workload scheduler described in Chapter 6 works in conjunction

with the reconfigurable PDN that includes under-provisioned OCVRs, which is de-

scribed in Chapter 5. The task scheduling is done such that the power demand of

all the cores in a CMP is less than the power delivery capacity of the PDN. The

scheduler, therefore, ensures peak load conditions do not occur on the CMP. A brief

description of each energy management technique is provided in Section 1.2.

1.2 Outline of the dissertation

Existing power management solutions for many-core architectures rely on architec-

ture level performance counters to react to the changing activity of the applications,

which incurs a large penalty when applying and recovering from a low power state.

Power predictive techniques are still in an early stage of development and are archi-

tecture specific. Therefore, techniques were developed that are executed at run-time

through the power delivery system of a many-core system. The circuit techniques are

complemented by a system level workload scheduler, which enables cross-layer energy

management.

Chapter 1: Introduction
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1.2.1 Research objective

The primary objective of the dissertation is to introduce intelligence into on-chip

power distribution through cross layer (system and circuits) dynamic power manage-

ment techniques that improve the energy efficiency of many-core systems configured

with heterogeneous cores.

1.2.2 Research methods

The techniques developed for the power delivery circuits and the operating system

introduce intelligence to on-chip power management to optimize the energy efficiency

of the circuit while accounting for process variation, transistor aging, and power

supply noise. The optimization techniques are applied at the

• operating system level through work load scheduling, and

• circuit level through the re-configurable and evolvable design of the components

of the power delivery network including the voltage regulators, interconnect

network, and voltage controlled decoupling capacitors.

1.2.3 Research contributions

The major contributions of the dissertation include:

1. A re-configurable on-chip power delivery network with two way information flow

between the processing elements and the circuits providing on-chip voltage reg-

ulation. The peak current output of the OCVRs supports the average current

requirements of the processing elements [15]. In a SMART grid, load balancing

Chapter 1: Introduction
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is achieved through one or all of the following three methods: switch reconfigu-

ration, tie-line addition, and wire upgrade [16]. In the context of on-chip power

delivery, an equivalent technique to wire upgrade or tie-line addition is not fea-

sible post fabrication. A high speed switching fabric is proposed to reconfigure

the connections between the OCVRs and processing elements to perform dy-

namic load balancing. With optimally sized OCVRs, the energy consumption

of the many-core system is reduced by up to 44% as compared to a system with

OCVRs designed for the worst case. The optimal sizing of the OCVRs also

reduces the on-chip foot print by at least 23%.

2. A supply side load balancing algorithm is developed for dynamic power man-

agement. The algorithm is executed on the on-chip power management unit

and combines the output of the OCVRs to support load currents in excess of

Iavg. The on-line algorithm clusters the OCVRs to provide the necessary cur-

rent when the demand of the cores exceeds Iavg. The algorithm is an evolution

of the work proposed in [17] for energy efficient OCVR clustering.

3. A convex energy optimization problem is solved to ensure the reliability of the

proposed reconfigurable power delivery system with under-provisioned on-chip

voltage regulators. The optimization problem is constrained by the total power

budget of the IC and is limited to the combined peak current rating of the

OCVRs. The feasibility of the solution, determined by solving the optimization

problem, is demonstrated through a real time workload scheduling heuristic for

a many-core platform. The scheduler is applicable to homogeneous and hetero-

Chapter 1: Introduction
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geneous core configurations. A 100% scheduling of tasksets and assignment of

DVFS levels for each core of a homogeneous CMP with task utilization factors

of up to 0.55 is demonstrated.

4. Power supply noise in digital circuits induced due to sudden workload varia-

tion is a growing concern in advanced technology nodes with a sub 1 V power

supply voltage and a reduced voltage guard band. Devices that offer a voltage

dependent capacitance such as the silicon hyperabrupt varactor are proposed

to suppress noise on the on-chip power distribution network for noise sensitive

digital blocks. The variation in the capacitance of the varactor with voltage is

exploited to reduce the dependence of the voltage across the varactor terminals

on the charge stored or released from the varactor. For the same amount of

charge drawn, the voltage drop across series connected hyperabrupt junction

diodes is shown to be up to 60% less than an MIM or deep trench capacitor

with the same capacitance.

5. A circuit to detect and reliably set the power supply voltage of a given voltage

domain is developed. Correct power supply voltage detection and clamping is

demonstrated through circuit simulation of two device planes, one in a 22 nm

and the other in a 45 nm fabrication process. The power module is capable of

setting the power supply voltage in the range of 0.7 V to 2.5 V. The voltage

generated by the power module acts as a reference voltage to an on-chip voltage

regulator. The reference voltage is within 1% of the targeted power supply

voltage, as indicated by simulated results.

Chapter 1: Introduction
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6. A dynamic and distributed PDN is developed through an analysis of technol-

ogy parameters and the timing of critical paths of the digital blocks within each

power domain. The developed method offers adaptive voltage delivery to a

given voltage domain. The reference voltages of the on-chip voltage regulators

are controlled through a particle swarm optimization (PSO) to compensate for

the effects of transistor aging and process, voltage, and temperature induced

variation. The optimized output voltages of the regulators are within the tech-

nology specified voltage tolerance bands. The on-line learning of the optimum

voltages with time reduces the static voltage guard-band added during the de-

sign of the PDN for the worst case process, temperature and aging induced

timing variation in digital circuits. The simulation results indicate an average

reduction of 35% and 5% in, respectively, the power consumption and operating

temperature of the voltage domains. In addition, the end of life of the voltage

domain is extended due to a mean reduction of 40% in the aging induced shift

in Vth.

Chapter 1: Introduction
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Chapter 2: Background on DC-DC voltage converters

“According to incomplete statistics, there have been more than 500 prototypes of

DC/DC converters developed in the past six decades."

– Fang Lin Luo and Hong Ye, Essential DC/DC Converters (2005), p.1.

This chapter provides an overview of the DC-DC voltage conversion circuits used

for on-chip voltage regulation. In the post-Dennard regime, the reduced noise mar-

gins in high performance integrated circuits (IC) require precise voltage delivery with

low susceptibility to noise. Electronic devices ranging from mobile to server class

computers traditionally include voltage regulator modules placed on printed circuit

boards (PCB). In the single core computing era, the implementation of the power

delivery network was less complex as one voltage regulator served the on-chip digital

blocks. With the advent of multi-core computing, a single voltage regulator serving

all the cores became ineffective as there is a large amount of power loss due to the

varying current demands of the cores. Using multiple off-chip voltage regulators to

serve individual cores significantly increases the occupied PCB area if the regulators

are implemented using passive components. The slew rate offered by off-chip volt-

age regulators is often insufficient to meet the dynamic variation of the load circuits,

leading to further power loss [18]. The increasing number of voltage domains in a

System on Chip (SoC), Network on Chip (NoC), and 3-D integrated circuit require



13

accurate characterization to properly distribute voltage regulators to assure an opti-

mized power efficiency. A one size fits all approach by using a single high efficiency

off-chip voltage regulator fails to provide an energy efficient solution.

For the circuit and system techniques and methodologies developed in this thesis,

on-chip voltage regulators are proposed to improve the energy and area efficiency of

the circuit by providing point-of-load power delivery in high performance ICs. There

are three important parameters that determine the quality of a voltage regulator:

(1) power conversion efficiency, (2) load transient response, and (3) voltage switching

time. These parameters are studied in detail and trade-offs associated with each are

described in this chapter.

2.1 On-chip DC-DC voltage regulator topologies

Integrating voltage regulators on-chip to locally serve each voltage domain at a

per core granularity addresses the problem of increased power losses. The IR drop is

reduced as a result of: (1) the shorter interconnect length between the on-chip voltage

regulators (OCVRs) and the load circuit, and (2) a smaller current is brought on chip

at a higher voltage. The L
di

dt
noise is better localized and reduced due to the smaller

inductance offered by on-chip interconnects as compared to the large inductance of

the wire bond or ball grid array when off-chip voltage regulators are implemented.

The OCVRs offer a faster slew rate, generally two to three orders of magnitude higher

than off-chip voltage regulators [18]. The occupied PCB area is reduced, facilitating

compact form factors for mobile devices.

There are always trade-offs to consider when deciding the best voltage regulator

Chapter 2: Background on DC-DC voltage converters



14

Figure 2.1: OCVR topologies and application.

topology and power distribution scheme in complex on-chip architectures. The dif-

ferent categories of OCVR topologies are shown in Fig. 2.1. From all topologies,

switching DC-DC regulators are the most widely used due to superior voltage regu-

lation and high efficiency. There are two important types of non-isolated switching

voltage regulators: buck and boost. The boost voltage regulator is a step-up regu-

lator that provides discontinuous output current and is intrinsically unstable due to

two conjugate poles and one right half plane (RHP) zero in the duty cycle of the

output transfer function. The buck converter is more widely used for on-chip voltage

regulation and is described in detail in Section 2.1.2.

Linear DC-DC regulators are classified as either series or shunt topologies. Both

configurations offer a step down of the input voltage. The fundamental difference

between the two topologies is that a series regulator offers a path from the input

voltage to the load, whereas a shunt regulator offers a path between the input voltage

and ground through a variable resistor, which leads to a DC current overhead. The

Chapter 2: Background on DC-DC voltage converters
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lower efficiency and noise susceptibility of shunt regulators make them unsuitable for

on-chip voltage regulation. Therefore, series regulators offer superior output voltage

regulation and utilize minimum area as no passive components are needed. A low

drop-out (LDO) regulator is a special class of series linear DC-DC regulators and is

described in detail in Section 2.1.3.

MEMS based DC-DC converters [19], [20] have been proposed for on-chip voltage

regulation but are far from being adopted due to process incompatibility between

MEMS and CMOS and a low energy efficiency. However, once such limitations are

addressed with advanced design and fabrication techniques, MEMS based DC-DC

converters are potential candidates for a distributed on-chip power supply in 3-D ICs,

where a dedicated plane for MEMS devices is feasible.

2.1.1 Switched capacitor voltage converters

Switched capacitor voltage regulators (SCVR) are capable of stepping up or step-

ping down the input voltage to any given ratio within an upper limit. The design is

based on the integration of a few capacitors and switches. A single-stage SCVR is con-

figured into several topologies based on the configuration of switches and capacitors

to implement the target output voltage ratios. For instance, an SCVR implemented

in a ladder-type SC converter topology is shown in Fig. 2.2. The odd-numbered

switches are active in phase 1 and the even-numbered switches are active in phase

2. The DC common-mode voltage of capacitors C4 and C5 changes with respect to

ground and, therefore, these capacitors are referred to as flying capacitors. The DC

common-mode voltages of capacitors C1, C2, and C3 are fixed with respect to ground

Chapter 2: Background on DC-DC voltage converters
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