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ABSTRACT 
 
We have all heard the term “cracking the genomic code”, but is 
DNA a code in the information theoretic sense?  The coined term 
“genetic code” maps nucleotide triplets (codons) to amino acids.  
However, this is in computer coding sense because a codon 
instruction is performed to output an amino acid sequence.  In 
this paper, we examine methods to detect redundant coding 
structure in DNA.  First, a finite field framework for a nucleotide 
symbolic sequence is presented then approaches to finding 
sequence structure associated with error correcting codes are 
examined.  We compare a previously proposed parity-check 
vector search method to a novel subspace partitioning algorithm. 
The subspace partitioning algorithm is a general approach to 
finding any linear coding redundancy.  Our method provides an 
easy way of visualizing coding potential in DNA sequences as 
shown from the test data. 

 

1. INTRODUCTION 
 
Since the introduction of the Watson-Crick model of DNA, 
scientists have been trying to make sense of the long sequence, 
millions long for simple organisms and billions long for complex 
ones, composed of four bases.  Since the introduction of 
Shannon’s mathematical theory of communication, many 
scientists have tried to explain DNA within an information 
theoretic framework [4]. Claude Shannon’s PhD thesis [9] was a 
mathematical theory of genetics.  It is appropriate that his 
information theories are now applicable to his original interests. 
 
1.1. The Channel 
Communication channel models have been paralleled to DNA 
processes.  In one doctrine, the channel is assumed to be the 
amino acid translation from nucleotide triplets [4].   In May et. 
al, the channel is the actual replication process [8].  The latter is 
good for mutation modeling since transcription and copying of 
DNA is a noisy process.  “Proof-reading”  mechanisms are 
observed during DNA replication, and when the activity of these 
polymerase mechanisms are blocked, error rates increase from 
10e-6 to 10e-3 [3].  We use a model similar to May’s since 
errors occur directly on the DNA strand in replication while 
errors in the translation process can also occur in the formation 
of amino acids and proteins.  In our framework, DNA is the 
medium in which genetic information is transmitted from 
generation to generation. 

 

 
Figure 1: Our noisy channel model of genome replication with 
underlying coding assumption  
 
1.2. Nucleotide Representation 
Whenever one attempts to tie mathematical theory to the 
genome, the most important assumption is the representation of 
the nucleotides.  There are several forms proposed and adapted 
to the type of analysis.  Assessing the purine/pyrimidine 
structure, one can represent the purines(A and G) and the 
pyrimidines(C and T) with a binary representation.  For four 
bases, one can choose a simple representation such as A=1, C=2, 
G=3, T=4 and use modulo operations, but this implies a structure 
on the nucleotides such that T>A and C>G [10].  For a model of 
the translation process, Anastassiou defined a complex 
representation: A= 1+j, T= 1-j, C= -1-j, G= -1+j [1].  The 
geometric interpretation of this representation still imposes 
constraints such that the Euclidean distance between A and C is 
greater than the distance between A and T, yet for the nucleotide 
quantization to amino acids, it was useful.  Also, one can use 
indicator sequences (binary sequences representing the locations 
of each base in the nucleotide sequence) producing a four-
dimensional representation yielding an efficient representation 
for spectral analysis [1].  When modeling processes in RNA, a 
fifth base, Inosine, can be taken into account [8]. 
  In this paper, we will map nucleotides to a finite field 
of four, GF(4).  This places on DNA the following Galois field 
properities: the elements are commutative under addition and 
both commutative and associative under multiplication as well as 
having an identity element and multiplicative inverses.  Since 
GF(4) is an extension field of GF(2), we can create labels for the 
bases (Figure 2) using GF(2)’s primitive polynomial: 

 01��  2 =++   
This abstraction of elements to integer labels makes finite field 
theory an attractive framework. 
 
1.3. Problem Formulation 
In Figure 1, we assume that the DNA is the sequenced genomic 
data available in GenBank [5], and our goal is to examine the 
dashed-line encompassed area and uncover the encoder scheme;  
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in other words, we wish to infer structure from the noisy output 
to retrieve the original genetic information.  Also, if our 
assumption is correct and DNA is encoded in a linear redundant 
fashion, our analysis will uncover it.  In this system, we know 
nothing about the encoder nor the original information, thus, 
system identification and deconvolution methods cannot be 
used.  We will assume that the encoder is linear and try to 
characterize it given such output. 
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Figure 2:  Exponential root representation, polynomial 
representation, numerical label, and nucleotide label  
 
1.4. (n,n-1) Code Search 
Liebovitch et. al. introduced a single parity bit search [6].  A 
formal motivation for the approach can be derived from Theorem 
4-8 from Wicker [11]:  “ A vector c is a code word in C if and 
only if cHT=0.”   Thus, given a DNA frame vector C∈c , each 
row in H, the parity-check matrix, must span the nullspace of C, 
the full sequence.  If hn is a row vector of H, then 0=• nhc , ie: 

the parity-check matrix will be a set of orthogonal codes to c.  If 
there is one common hn amongst all C∈c , then the DNA 
sequence is encoded in a single-bit parity-check fashion.    

In the existence of a parity-check code, a sliding 
window will move frame by frame down a DNA sequence and 
will have one or more identical parity-check vectors orthogonal 
to each frame.  See Figure 3 for an illustration of how the 
sequenced is windowed.  If a nucleotide is inserted or deleted in 
the replication process, a frame shift error is introduced into the 
sequence and will cause the parity-check window to lose sync. 

In order to exhaustively search for single bit parity- 
check codes with frame offset error possibilities, we decided to 
take the approach further and calculate the parity-check vector 
orthogonal to most frames including all frames offsets.  Then 
each frame that contains this codeword is plotted and one can 
visualize from the graph if there is single bit parity-check vector 
common to each codeword over a region (See Figure 4a). 

This approach reveals codewords that happen to be 
orthogonal to a parity-check vector by chance and should be 
compared against a sequence which has the same alphabet 
composition (see Section 2 for more on alphabet information 
content).  A comparison of a random sequence is shown (Figure 
4b).  From the two plots, it is shown that an (n,n-1) code 
corresponding to a specific parity-check vector cannot be found.  
From simulations, we observed that the frequency of the most 
common parity-check vector directly relates to the entropy of the 
sequence (see Section 2 for explanation of sequence entropy).   

This experiment provides context for the complexity of 
the problem.  For this search, a type of code must be assumed.  
Thus, there is a need for a general approach such as Section 3 to 
discern an (n,k) coding structure from DNA sequence content. 
 

2. GC CONTENT INTRODUCES REDUNDANCY 
 
By investigating measures of entropy, we can look at basic 
measures of information content.  The entropy of a sequence is 
maximized when all four nucleotides are equi-probable: 
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In many species, the bases are not equiprobable, but temperature 
dependent.  Three bonds exist in C and G bases while only two 
exist in A and T.  Thus, it takes more energy to make C and G, 
and it has been found that GC content is higher in warm-
environment organisms than cold-environment.  For example, 
Micrococcus Lysodeikticus[4] has the following base 
frequencies: Pr(C)=Pr(G)=.355 and Pr(A)=Pr(T)=.145.  
Therefore, the entropy for this organism utilizing the first part of 
(1), is 1.87 bits, which implies redundancy from this imbalance.   

For our example data, a segment from the E. coli K-12 
MG1655 coding region sequence has the following composition: 
N(A)/N=.262, N(C)/N=.281, N(T)/N=.206, N(G)/N=.25.  
Therefore, it is nearly at maximum entropy with 1.99 bits. 
 

3. SUBSPACE PARTITIONING FOR (N,K) CODES 
 
Our primary goal is to identify and characterize any linear 
constraints that might appear in regions of a sequence.  Lacking 
the benefit or prior knowledge regarding the location, duration, 
or dimensionality of subspace partitioning in the sequence, we 
propose a method that generates a complete orthogonal basis set 
oriented to a local region of data.  The basis set is used to 
decompose the sequence (equivalent to a coordinate 
transformation).  The consistent presence of nulls in the 
transformed sequence indicates both the presence and the 
dimension of linear subspace partitioning in the data. 
  The first assumption is a fixed codeword length, n.  
The DNA elements are grouped into a matrix, V = [v1  v2  ...  vN] 
where the length of the entire DNA sequence is  nN ∗ and vi is 
length n.  The alignment of the frames relative to the starting 
point will be referred to as the framing offset.  A choice of a 
particular framing offset will be referred to as the frameset, or 
open reading frames as called in the biological literature.  Given 
the frame length n, there are n unique framesets. 
 

 
Figure 3: Illustration of vector framing for n=3. 
 

We apply the Gram-Schmidt algorithm using finite 
field operations to the sequence of vectors to yield a complete set 
of orthogonal basis vectors, {e1,e2,…en}.  In the event that the 
entire sequence consists of vectors lying in a subspace of 
dimension less than n, we introduce random vectors and 
continue to iterate Gram-Schmidt until the basis set is complete.  
This yields a transform matrix G that is clearly full-rank, as it 
consists of n orthonormal vectors. 

Once an orthogonal basis is formed from the first j 
frames of data, the vi’ s for i> j are decomposed into components 
of each of the basis vectors.  This is simply a coordinate 
transformation and can be described by: 

GTAGTCGAATGTCATTGCTGAT…  

[ GTA] [ GTC] [ GAA] [ TGT] [ CAT] [ TGC] …  

[ TAG] [ TCG] [ AAT] [ GTC] [ ATT] [ GCT] …  

[ AGT] [ CGA] [ ATG] [ TCA] [ TTG] [ CTG] …  
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Provided that the data has been framed correctly when 

applying the Gram-Schmidt algorithm, a linear coding 
redundancy can be detected by noting consistent null coordinates 
over a region in the transformed sequence of length-n vectors, 
{t1,t2,…,tN-j}.  This null detection would indicate a subspace of 
the actual n-dimensional space exists. 

Knowing nothing of the dimension or alignment of the 
data, we must apply the algorithm for many codeword lengths.  
For a given codeword length and for a given locality in the 
sequence, we apply the algorithm n times to account for each 
framing offset.  For each of the n iterations, the vector frameset 
is offset by one element of the sequence to guarantee that if 
length-n codewords are present in the sequence, one of the 
framesets will be properly aligned. 

 
Algorithm Outline 

1. Obtain the orthonormal basis, {e1,e2,…,en}, by Gram-
Schmidt orthogonalization of j number of  vi  frames where 
j ≥ n. Form the transform matrix, G, from this set.  

2. Decompose the sequence into its basis components, 
{t1,t2,…tN -j}, across all possible framing offsets. 

3. Note the persistence of nulls in ti’ s.  Calculate confidence 
by comparing against the probability of sequential sets of 
randomly chosen vectors having the same subspace 
partitioning. 

 
It should be noted that on finite fields, non-zero 

element vectors can have an inner product of zero (the additive 
identity element of the field), thus self-orthogonal vectors can 
exist.  The situation sometimes arises in which a subspace is 
characterized entirely by self-orthogonal basis vectors.  For this 
reason, the coordinates in the transformed vector sequence 
associated with these self-orthogonal basis vectors are always 
zero.  In this case the decomposition cannot proceed and the 
algorithm must be terminated, reframed, and started anew. 

Given the copious volume of data produced by 
iterating the algorithm over numerous frame shifts and codeword 
lengths, a visualization method is devised to aid in the search for 
consistent subspace partitioning.  For each frameset, consistent 
nulls in the decomposed vectors are noted in an attempt to 
characterize the unoccupied subspace.  A null-subspace indicator 
vector is used to mark the locations of nulls found consistently in 
the data.  Each shift in sequence results in an update of the 
indicator vector.  If the vector remains unchanged across 
iterations, a probabilistically-based value increases to indicate 
confidence in the presence of subspace partitioning (as the 
probability of randomly-chosen vectors possessing the observed 
subspace partitioning diminishes).  We can then plot the 
confidence as a function of sequence index i across all possible 
framing offsets.   

The algorithm is capable of detecting and 
characterizing linear subspace partitioning in any sequence 
provided that such structure is manifest in the data.  For a given 
sequence, all such structure can be found provided that the 

algorithm is run for every possible framing offset and for every 
possible codeword length. 

By way of illustration, a random test sequence is 
generated to occupy a five-dimensional subspace of an eight-
dimensional vector space.  This constitutes an (8,5) linear block 
code in GF(4).  Running the algorithm on this sequence for n=8 
yields the confidence image shown in Figure 5a.   

Interstitial symbols are introduced throughout the 
sequence to illustrate the robustness of the algorithm to framing 
offsets.  When framing offsets are introduced in the sequence, 
the region of high subspace partitioning confidence simply 
migrates to the corresponding row in the diagram.   

These “confidence stripes”  of themselves say nothing 
of the dimensional occupancy of the underlying sequence.  
Rather, they are used as search tools to simplify the analysis of 
large volumes of data.  Their presence alerts us to the location of 
subspace partitioning in the sequence, at which point we can 
retrieve the local indicator vector to observe that, indeed, there 
are three dimensional nulls present throughout the duration of 
each of the confidence stripes. 
 

4. RESULTS 
 
The parity-check search method only searches for a common 
parity-check vector but could be expanded to a higher rank 
parity-check matrix, H.  However, the subspace partitioning 
method is a more adaptable algorithm for general redundancy 
analysis.  

The subspace partitioning algorithm described is able 
to identify and parameterize dimensional occupancy in a region 
independent of framing, provided that the structure is present 
from the outset.  This algorithm can be more generally applied to 
any sequence for which it is suspected that coding properties are 
present.  The algorithm could readily be adapted in a 
classification scheme for data of unknown origin or for 
cryptographic/cryptanalysis tasks in which the code or 
encryption scheme is unknown.    

The algorithm needs improvement in two areas.  
Firstly, the algorithm uses nulls in a transform to indicate 
subspace partitioning.  This requires that the coordinate system 
described by the transform be properly oriented.  The transform 
matrix is guaranteed to be properly aligned for exactly one of the 
possible framesets, provided that the structure in question is 
present from the outset of the sequence.  If there is an onset of 
structure in the data at a later point in the sequence, it may not be 
found.  This stems from the primacy effect inherent to the Gram-
Schmidt algorithm: the coordinate system (basis set) produced is 
oriented according to the order in which vectors are presented. 

Secondly, the component decomposition algorithm is 
defeated by the case in which the Gram-Schmidt algorithm 
produces a fractional basis set.  This is because finite field 
arithmetic allows for the existence of self-orthogonal vectors.  
The situation sometimes arises in which Gram-Schmidt produces 
a coordinate subspace whose complement contains entirely self-
orthogonal vectors.  While this situation is rare (7 out of 75 
times in processing the E Coli DNA strand), it is impossible to 
perform the decomposition discussed here when it does occur.  
In this way, it creates "blind spots" for the algorithm: certain 
combinations of codeword length and framing offsets are self-
orthogonal and cannot be analyzed using Gram-Schmidt. 



A superior technique is presently being investigated to 
overcome both of these faults.  The revised algorithm will use a 
more general solution to find all linear dependency among sets 
of vectors over a region.  This is a "sliding window" solution that 
is insensitive to the starting point in the data but will yield the 
same information, the dimension of occupancy for a given 
codeword length.  A method for sidestepping the problem of 
self-orthogonality is under investigation.  Provided that a 
tractable solution exists, it guarantees the capability of detecting 
any and all subspace partitioning in a region of data. 
 

5. CONCLUSIONS AND FUTURE WORK 
 
From the investigations presented, preliminary results show no 
apparent error correcting code in E. Coli DNA.  Other DNA 
sequences should be tested, and alternative forms of codes, such 
as convolutional codes, need to be considered.  The following 
discusses biologically discovered regions in DNA and how they 
may affect this type of analysis. 

Our methods were based on the hypothesis that there is 
an underlying coding structure in the DNA sequence used for 
mutation recovery in the replication process.  We assumed this 
structure would occur in both “coding”  (in the computer coding 
sense) and non-coding regions.  (There has been great effort in 
distinguishing between these gene and “ junk”  regions [2].)   

On the contrary, mutation rates vary from region to 
region in the genome, and these areas might need separate 
treatment.  Nature relies on mutations and uses errors for 
diversity.  It has been noted that non-coding regions (which 
compose over 97% of the entire genome) are more susceptible to 
mutation than coding regions.  Also, frequency of mutation can 
vary from one gene to another;  different genes in corn showed 
variation of mutation rates by 400-fold [3]. 

In addition, little is known about non-coding regions 
except that they possess signals that regulate transcription and 
translation processes.  For example, the non-coding region 
upstream from a gene contains a ribosomal binding site which is 
the initiator for translation of amino acids.  Information content 
of these areas is instrumental in gene finding [2,8]. 
   Prokaryotes, cells without a nucleus, tend to have their 
genes encoded on DNA in one continuous nucleotide 
succession.  Nuclear-celled organisms’  genes are interrupted by 
non-coding sequences called introns.  Except for the fact that 
they are spliced out of the sequence before translation, not much 
is known about these regions.  From a coding point of view, 
these otherwise useless bases would be perfect for containing 
error-control information such as parity bits.  Intron sequences 
are prime candidates for information and coding analysis. 

Mac Donaill suggests that nature prefers an alphabet of 
four due to the parity code structure in hydrogen donor-acceptor 
patterns of purine and pyrimidine molecules [7].  While our 
methods checked for coding structure on the nucleotide 
sequence itself, there is also the possibility of structure in the 
actual chemical bonds between complementary bases.    
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7. FIGURES 
 

(3,2) Codeword Search 
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Fig. 4a:  E. coli codewords              Fig. 4b: Random sequence  
which correspond to most          codewords corresponding 
common parity-check to most common parity-
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Linear Subspace Partitioning 
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Fig. 5a: Analysis of an ideal       Fig. 5b: Analysis of a n=6 
(8,5) Coding Region, Test data    E. Coli MG1655 sequence 


