
Introduction to Hidden Markov 
Models for Gene Prediction


ECE-S690




Outline


 Markov Models

 The Hidden Part

 How can we use this for gene 

prediction?




Learning Models


 Want to recognize patterns (e.g. 
sequence motifs), we have to learn from 
the data  







Markov Chains


A B C 
Probability 

of 
Transition 

Probability 
of 

Transition 

Current State only 
depends on previous 
state and transition 

probability 

aBA=Pr(xi=B|xi-1=A) 



Example:  Estimating Mood State 
from Grad Student Observations






Example: “Happy” Grad Student 
Markov Chain


Lab Coffee Shop Bar 

0.5 

0.3 0.2 

0.2 

0.7 

0.2 

Observations:   
Lab, Coffee, Lab, Coffee, Lab, Lab, Bar, Lab, Coffee,…   

0.5 

0.3 

0.1 



Depressed about research


Lab Coffee Shop Bar 

0.05 

0.1 0.75 

0.8 

0.1 

0.2 

0.1 

0.2 

0.7 



Evaluating Observations


 The probability of observing a given 
sequence is equal to the product of all 
observed transition probabilities.  

 P(Coffee->Bar->Lab) = 
   P(Coffee) P(Bar | Coffee) P(Lab | Bar) 

 P(CBL) = P(L|B) P(B|C)P(C)  

X are the 
observations 



1st order model


 Probability of Next State | Previous State

 Calculate all probabilities




Convert “Depressed” 
Observations to Matrix


Lab Coffee Shop Bar 

0.05 

0.1 0.75 

0.8 

0.1 

0.2 

0.1 

0.2 

0.7 



Scoring Observations: Depressed 
Grad Student


From 
Lab


From Coffee 
Shop


From 
Bar


To Lab
 0.1
 0.05
 0.2


To Coffee 
Shop


0.1
 0.2
 0.1


To Bar
 0.8
 0.75
 0.7


Pr from 
each state 
add to 1 

Student 1:LLLCBCLLBBLL 
Student 2:LCBLBBCBBBBL 
Student 3:CCLLLLCBCLLL  



Scoring Observations: Depressed 
Grad Student


From 
Lab


From Coffee 
Shop


From 
Bar


To Lab
 0.1
 0.05
 0.2


To Coffee 
Shop


0.1
 0.2
 0.1


To Bar
 0.8
 0.75
 0.7


Student 1:LLLCBCLLBBLL 

Pr from 
each state 
add to 1 

p’s 



Scoring Observations: Depressed 
Grad Student


From 
Lab


From Coffee 
Shop


From 
Bar


To Lab
 0.1
 0.05
 0.2


To Coffee 
Shop


0.1
 0.2
 0.1


To Bar
 0.8
 0.75
 0.7


Student 1:LLLCBCLLBBLL 

Pr from 
each state 
add to 1 



Scoring Observations: Depressed 
Grad Student


From 
Lab


From Coffee 
Shop


From 
Bar


To Lab
 0.1
 0.05
 0.2


To Coffee 
Shop


0.1
 0.2
 0.1


To Bar
 0.8
 0.75
 0.7


Student 1:LLLCBCLLBBLL = 4.2x10-9  
Student 2:LCBLBBCBBBBL = 4.3x10-5  
Student 3:CCLLLLCBCLLL = 3.8x10-11 

Pr from 
each state 
add to 1 

p’s 



Equilibrium State

From 
Lab


From Coffee 
Shop


From 
Bar


To Lab
 0.333
 0.333
 0.333


To Cofee 
Shop


0.333
 0.333
 0.333


To Bar
 0.333
 0.333
 0.333


Student 1:LLLCBCLLBBLL = 5.6x10-6  
Student 2:LCBLBBCBBBBL = 5.6x10-6  
Student 3:CCCLCCCBCCCL = 5.6x10-6 

q’s 



Comparing to Equilibrium States




Evaluation Observations


 Likelihood ratios: 
 Student 1 = 4.2x10-9 / 5.6x10-6 = 7.5x10-4 
 Student 2 = 4.3x10-5 / 5.6x10-6 = 7.7 
 Student 3 = 3.8x10-11 / 5.6x10-6 = 6.8 x 10-6 

 Log likelihood ratios  
 Student 1 = -3.2 
 Student 2 =  0.9  (Most likely sad) 
 Student 3 = -5.2  



The model could represent 
Research Breakthrough (Happy) 
Student!:  Transition Probabilities


From 
Lab


From Coffee 
Shop


From 
Bar


To Lab
 0.6
 0.75
 0.5


To Cofee 
Shop


0.25
 0.2
 0.45


To Bar
 0.15
 0.05
 0.05




Combined Model


Lab Coffee Shop Bar 

Lab Coffee Shop Bar 

Happy Student 

Depressed Student 



“Generalized” HMM


Lab Coffee Shop Bar 

Lab Coffee Shop Bar 

Emission 

Transition 

Happy 

Depressed 



Generalized HMM - Combined 
Model


Lab Coffee Shop Bar 

Lab Coffee Shop Bar 

Start End 

Happy 

Depressed 



Simplifying the Markov Chains  to 
0th order to model hidden states


 Happy:  Lab: 75%, Coffee: 20%, Bar 5%

 Sad: Lab:40%, Coffee: 20%, Bar 40%




HMM - Combined Model


Start End 

Happy 

Depressed 

L: 0.75 
C: 0.2 
B: 0.05 

L: 0.4 
C: 0.2 
B: 0.4 



Hiddenness




Evaluating Hidden State


 Evaluating Hidden State

 Observations:  
LLLCBCLLBBLLCBLBBCBBBBLCLLLCCL 
Hidden state:  
HHHHHHHHHHHHHDDDDDDDDDDHHHHHHH 




Applications




Particulars about HMMs




Gene Prediction




Why are HMMs a good fit for DNA 
and Amino Acids?




HMM Caveats


•    States are supposed to be independent of 
each other and this isn’t always true 
• Need to be mindful of overfitting 
– Need a good training set 
– More training data does not always mean a better 
model 
• HMMs can be slow (if proper Decoding not implemented) 
– Some decoding maps out all paths through 
the model 
– DNA sequences can be very long so processing/ 
annotating them can be very time consuming 



Genomic Applications


  Finding Genes

  Finding Pathogenicity Islands




Neisseria meningitidis, 52% G+C


(from Tettelin et al. 2000. Science)


GC 

Content


Example Bio App:  Pathogenicity 
Islands


 Clusters of genes acquired 
by horizontal transfer

 Present in pathogenic species 

but not others

 Frequently encode virulence 

factors

 Toxins, secondary 

metabolites, adhesins


 (Flanked by repeats, regulation and have 
different codon usage)


 Different GC content than rest of genome




Modeling Sequence Composition 
(Simple Probability of Sequence)


  Calculate sequence distribution from 
known islands

  Count occurrences of A,T,G,C


  Model islands as nucleotides drawn 
independently from this distribution


A: 0.15

T: 0.13

G: 0.30

C: 0.42


…
…

A: 0.15

T: 0.13

G: 0.30

C: 0.42


A: 0.15

T: 0.13

G: 0.30

C: 0.42


P(Si|MP)


... C C TA A G T T A G A G G A T T G A G A ….




The Probability of a Sequence 
(Simplistic)


 Can calculate the probability of a particular sequence 
(S) according to the pathogenicity island model (MP)


Example


S = AAATGCGCATTTCGAA

A: 0.15

T: 0.13

G: 0.30

C: 0.42




Background Island 

0.15 

0.25 
0.75 0.85 

A: 0.25

T: 0.25

G: 0.25

C: 0.25


TAAGAATTGTGTCACACACATAAAAACCCTAAGTTAGAGGATTGAGATTGGCA

GACGATTGTTCGTGATAATAAACAAGGGGGGCATAGATCAGGCTCATATTGGC


A: 0.15

T: 0.13

G: 0.30

C: 0.42


A More Complex Model




P


B
B


P
P


B


P
 P


B


P


B


P


B


P


B


P


B


A Generative Model


P
 P


B
 B
 B


P
 P


C
 A
 A
 A
 T
 G
 C
G
S:


B
 B
 B


P
 P
 P


B
 B


A: 0.42

T: 0.30

G: 0.13

C: 0.15


A: 0.25

T: 0.25

G: 0.25

C: 0.25


P(S|P)
P(S|B)
P(Li+1|Li)

Bi+1
 Pi+1


Bi
 0.85
 0.15


Pi
 0.25
 0.75




The Hidden in HMM


 DNA does not come 
conveniently labeled (i.e. 
Island, Gene, Promoter)


 We observe nucleotide 
sequences


  The hidden in HMM refers to 
the fact that state labels, L, 
are not observed

 Only observe emissions (e.g. 

nucleotide sequence in our 
example)


State i State j 

…A A G T T A G A G…




A Hidden Markov Model


Hidden States 


L = { 1, ..., K }


Transition probabilities

akl = Transition probability 
from state k to state l


Emission probabilities

ek(b) = P( emitting b | 
state=k)


Initial state probability

      π(b) = P(first state=b)


State i State j 

el(b)
ek(b)


Emission

Probabilities


Transition

Probabilities




HMM with Emission Parameters


 a13:  Probability of a transition from State 1 
to State 3


 e2(A):  Probability of emitting character A in 
state 2




Hidden Markov Models (HMM)


 Allows you to find sub-sequence that fit 
your model  

 Hidden states are disconnected from 
observed states  

 Emission/Transition probabilities  
 Must search for optimal paths 



Three Basic Problems of HMMs

 The Evaluation Problem


 Given an HMM and a sequence of observations, what 
is the probability that the observations are generated 
by the model?


 The Decoding Problem

 Given a model and a sequence of observations, what 

is the most likely state sequence in the model that 
produced the observations?


 The Learning Problem

 Given a model and a sequence of observations, how 

should we adjust the model parameters in order to 
maximize evaluation/decoding




Fundamental HMM Operations


Decoding

  Given 
an HMM and sequence S

  Find 
a corresponding sequence 

of 
labels, L 
 
 


Evaluation

  Given 
an HMM and sequence S

  Find 
P(S|HMM)


Training

  Given 
an HMM w/o parameters 



and set of sequences S

  Find 
transition and emission 



probabilities the maximize 

 
P(S | params, HMM)


Computation
 Biology


Annotate pathogenicity 
islands on a new sequence


Score a particular sequence


Learn a model for sequence 
composed of background 
DNA and pathogenicity 
islands




Markov chains and processes

1st order Markov chain 

2nd order Markov chain 

1st order with stochastic observations -- HMM 



Order & Conditional Probabilities


P(ACTGTC) = p(A) x p(C) x p(T) x p(G) x p(T) ... 

P(ACTGTC) = p(A) x p(C|A) x p(T|C) x p(G|T) … 

P(ACTGCG) = p(A) x p(C|A) x p(T|AC) x p(G|CT)... 

Order 

0th 

1st 

2nd 

P(T|AC) 
Probability of T given AC 



HMM - Combined Model for Gene 
Detection


Start End 

Coding 

Noncoding 



1st-order transition matrix (4x4)


A
 C
 G
 T


A
 0.2
 0.15
 0.25
 0.2


C
 0.3
 0.35
 0.25
 0.2


G
 0.3
 0.4
 0.3
 0.3


T
 0.2
 0.1
 0.2
 0.2




2nd Order Model (16x4)


A
 C
 G
 T

AA
 0.1
 0.3
 0.25
 0.05

AC
 0.05
 0.25
 0.3
 0.1

AG
 0.3
 0.05
 0.1
 0.25

AT
 0.25
 0.1
 0.05
 0.3


.

.

.



Three Basic Problems of HMMs


 The Evaluation Problem

 Given an HMM and a sequence of observations, what 

is the probability that the observations are generated 
by the model?


 The Decoding Problem

 Given a model and a sequence of observations, what 

is the most likely state sequence in the model that 
produced the observations?


 The Learning Problem

 Given a model and a sequence of observations, how 

should we adjust the model parameters in order to 
maximize




What Questions can an HMM 
Answer? 

Viterbi Algorithm: 
What is the most probable path that 
generated sequence X? 
Forward Algorithm: 
What is the likelihood of sequence X given 
HMM M – Pr(X|M)? 
Forward-Backward (Baum-Welch) Algorithm: 
What is the probability of a particular state k 
having generated symbol Xi? 



“Decoding” With HMM


Pathogenicity Island Example

Given a nucleotide sequence, we want a 
labeling of each nucleotide as either 
“pathogenicity island” or “background 
DNA”


Given observations, we would like to 
predict a sequence of hidden states that 
is most likely to have generated that 
sequence




The Most Likely Path


 Given observations, one reasonable choice 
for labeling the hidden states is:


The sequence of hidden state labels, L*, 
(or path) that makes the labels and 

sequence most likely given the model




Probability of a Path,Seq


P


B


P


B


P


B
 B


P


B
 B


P


B


P


B


G
 C
 A
 A
 A
 T
 G
 C


L:


S:


P
P


0.25
 0.25


B
 B
 B


0.25


0.85
 0.85
 0.85
 0.85

B
 B
 B
 B
 B


0.85


0.25


0.85


0.25
 0.25
 0.25
 0.25


0.85




Probability of a Path,Seq


P


B


P


B


P


B
 B


P


B
 B


P


B


P


B


G
 C
 A
 A
 A
 T
 G
 C


L:


S:


P
P


B
 B
 B
 B
 B

0.85


0.25


0.85


0.15
 0.25


0.25
 0.25
 0.42
 0.42
 0.30
 0.25
 0.25


0.85


P
 P
 P

0.75
0.75


We could try to calculate the probability of every path, but….




Decoding


 Viterbi Algorithm

 Finds most likely sequence of hidden states or 

labels, L* or P* or π*, given sequence and 
model


 Uses dynamic programming (same technique 
used in sequence alignment) 


 Much more efficient than searching every path




Finding Best Path


 Viterbi 

 Dynamic programming  
 Maximize Probability Emission of 

observations on trace-back  



Viterbi Algorithm


Most  probable state path given 
sequence (observations)? 



Viterbi (in pseudocode)


 l is previous state and k is next state

 vl(i)= el(xi) maxk(vk(i-1)akl)

 π* are the paths that maximizes the 

probability of the previous path times 
new transition in maxk(vk(i-1)akl)


Each node picks one max 
Start 







Forward Alg:  Probability of a Single 
Label (Hidden State)


 Calculate most probable label, L*
i , at each position i


 Do this for all N positions gives us {L*
1, L*

2, L*
3…. L*

N}


P


B


P


B


P


B
 B


P


B
 B


P


B


P


B


G
 C
 A
 A
 A
 T
 G
 C


L:


S:


P
P
P


B


P


B


P


B
 B


P


B
 B


P


B


P


B


P
P

Sum over all paths


P(Label5=B|S)
Forward algorithm

(dynamic programming)


fl(i) = el(xi) Σkfk(i-1)akl




Forward Algorithm


Start 

fl(i) = el(xi) Σkfk(i-1)akl


P(x) = Σk fk(N)ak0


Add probs of all 
Different paths to get 
Probability of sequence 



 Viterbi Algorithm

 Finds most likely sequence of hidden states, L* or P* 

or π*, given sequence and model


 Posterior Decoding

 Finds most likely label at each position for all 

positions, given sequence and model

            {L*

1, L*
2, L*

3…. L*
N}


 Forward and Backward equations


Two Decoding Options




Relation between Viterbi and Forward

VITERBI


Vj(i) = P(most probable 
path ending in state j 
with observation i )


Initialization:


V0(0) = 1


Vk(0) = 0, for all k > 0


Iteration:

Vl(i)= el(xi)maxkVk(i-1) akl


Termination:


P(x, π*) = maxkVk(N)


FORWARD


fl(i)=P(x1…xi,statei=l)


Initialization: 



f0(0) = 1


fk(0) = 0, for all k > 0


Iteration:

fl(i) = el(xi) Σkfk(i-1)akl


Termination:


P(x) = Σk fk(N)ak0




Forward/Backward Algorithms


 Way to compute probability of most probable 
path


 Forward and Backward can be combined to 
find Probability of emission, xi from state k 
given sequence x. P(πi=k | x)


 P(πi=k | x) is called posterior decoding

 P(πi=k | x) = fk(I)bk(I)/P(x)




Example Application: Bacillus subtilis




Method


Nicolas et al (2002) NAR


Gene+ Gene- 

AT Rich 

Second Order Emissions


P(Si)=P(Si|State,Si-1,Si-2)

(capturing trinucleotide


Frequencies)


Train using EM


Predict w/Posterior Decoding


Three State Model




Results


Nicolas et al (2002) NAR


Gene on positive strand


Each line is 

P(label|S,model)


color coded by label


Gene on negative strand


A/T Rich

-  Intergenic regions

-  Islands




Training an HMM


Transition probabilities

e.g. P(Pi+1|Bi) – the 
probability of entering a 
pathogenicity island from 
background DNA


Emission probabilities

i.e. the nucleotide 
frequencies for 
background DNA and 
pathogenicity islands


B P 

P(S|P)
P(S|B)


P(Li+1|Li)




Learning From Labelled Data


P


B


P


B


P


B
 B


P


B
 B


P


B


P


B


G
 C
 A
 A
 A
 T
 G
 C


L:


S:


If we have a sequence that has islands marked, we 
can simply count


A: 

T:  

G: 

C: 


P(S|P)
P(S|B)
P(Li+1|Li)

Bi+1
 Pi+1
 End


Bi
 3/5
 1/5
 1/5


Pi
 1/3
 2/3
 0


Start
 1
 0
 0


End
start


P


B
 B
 B
 B
 B


P


ETC..

!
A:      1/5


T:        0

G:      2/5

C:      2/5




Unlabelled Data


P


B


P


B


P


B
 B


P


B
 B


P


B


P


B


G
 C
 A
 A
 A
 T
 G
 C


L:


S:


How do we know how to count?


A: 

T:  

G: 

C: 


A:

T:        

G:

C:


P(S|P)
P(S|B)
P(Li+1|Li)


Start


?
Pi


Pi+1


Bi


End
Bi+1


End
start


P
P


?




Unlabeled Data


An idea:

1. Imagine we start with some parameters


(e.g. initial or bad model)


2. We could calculate the most likely path, 
P*, given those parameters and S


3. We could then use P* to recalculate our 
parameters by maximum likelihood


4. And iterate (to convergence)


P


B


P


B


P


B
 B


P


B
 B


P


B


P


B


G
 C
 A
 A
 A
 T
 G
 C


L:


S:


P(S|P)0
P(S|B)0
P(Li+1|Li)0


End
start


P
P


P(S|P)1
P(S|B)1
P(Li+1|Li)1


P(S|P)2
P(S|B)2
P(Li+1|Li)2


P(S|P)K
P(S|B)K
P(Li+1|Li)K


…


B
 B
 B
B
 B
 B
 B
 B
B
 B
 B
 B
 B


P
 P
 P




Training Models for Classification


 Correct Order for the model

 Higher order models remember more “history” 
  Additional history can have predictive value 

  Example: 
   predict the next word in this sentence fragment 
  “…finish __” (up, it, first, last, …?) 
   now predict it given more history 
  “Fast guys finish __” 




Model Order

 However, the number of parameters to estimate 

grows exponentially with the order for modeling 
DNA we need parameters for an nth order model, 
with n>=5 normally


 The higher the order, the less reliable we can 
expect our parameter estimates to be

  estimating the parameters of a 2nd order Markov 

chain from the complete genome of E. Coli, each word 
> 72,000 times on average


  estimating the parameters of an 8th order chain, word 
5 times on average




HMMs in Context


  HMMs

  Sequence alignment

 Gene Prediction


  Generalized HMMs

  Variable length states 

  Complex emissions models

  e.g. Genscan


  Bayesian Networks

 General graphical model

  Arbitrary graph structure

  e.g. Regulatory network 

analysis




HMMs can model different regions




Example Model for Gene 
Recognition 


Promoter C Start 
Trans- 
cription  
Factor 

Exon Splice Intron 

Repeat 

End 



Another Example




CpG Islands:  Another Application


 CG dinucleotides are rarer in eukaryotic 
genomes than expected given the 
independent probabilities of C, G 

 Particularly, the regions upstream of 
genes are richer in CG dinucleotides 
than elsewhere - CpG islands 



Most transitions omitted for clarity 

A+ C+ 

G+ T+ 

+aGC +aCG 

A- C- 

G- T- 

-aGC -aCG 
B E 

-+aAC 

CpG island DNA states: 
large C, G transition 

probabilities 

“Normal DNA” states: 
small C, G transition 

probabilities 

CpG Island Sub-model Normal DNA Sub-model 

CpG Islands




CpG Islands


  In human genome, CG dinucleotides are relatively 
rare

 CG pairs undergo a process called methylation 

that modifies the C nucleotide

 A methylated C mutate (with relatively high 

chance) to a T

 Promotor regions are CG rich


 These regions are not methylated, and thus 
mutate less often


 These are called CG (aka CpG) islands




CpG Island Prediction


  In a CpG island, the probability of a “C” following a “G” is 
much higher than in “normal” intragenic DNA sequence.


 We can construct an HMM to model this by combining 
two HMMs: one for normal sequence and one for CpG 
island sequence.


  Transitions between the two sub-models allow the model 
to switch between CpG island and normal DNA.


  Because there is more than one state that can generate a 
given character, the states are “hidden” when you just 
see the sequence.


  For example, a “C” can be generated by either the C+ or 
C-

 states in the following model.




Inhomogenous Markov Chains

Borodovsky’s Lab:  http://exon.gatech.edu/GeneMark/ 



Variable-length


Full 

Variable 
Length 



Interpolated HMMs


 Manage Model Trade-off by interpolating 
between various HMM Model orders


 GlimmerHMM




The Three Basic HMM Problems


  Problem 1 (Evaluation): 


Given the observation sequence O=o1,…,oT and an 

HMM model, how do we compute the probability of O 
given the model?


  Problem 2 (Decoding): 


Given the observation sequence O=o1,…,oT and an 

HMM model, how do we find the state sequence that 
best explains the observations?




 Problem 3 (Learning): How do we adjust 
the model parameters to maximize the 
probability of observations given the 
model?


The Three Basic HMM Problems




Conclusions


 Markov Models 
 HMMs 
 Issues 
 Applications 



Example of Viterbi, Forward, 
Backward, and Posterior Algorithms


Real DNA sequences are inhomogeneous and can be described 
by a hidden Markov model with hidden states representing 
different types of nucleotide composition.  Consider an HMM that 
includes two hidden states H and L for high and lower C+G 
content, respectively.  Initial probabilities for both H and L are 
equal to 0.5, while transition probabilities are as follows: aHH=0.5, 
aHL=0.5, aLL=0.6, aLH=0.4.  Nucleotides T, C, A, G are emitted from 
states H and L with probabilities 0.2, 0.3, 0.2, 0.3, and 0.3, 0.2, 
0.3, 0.2, respectively.  Use the Viterbi algorithm to define the most 
likely sequence of hidden states for the sequence,  X=TGC. 


