Introduction to Hidden Markov
Models for Gene Prediction
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Outline

v Markov Models
v The Hidden Part

v"How can we use this for gene
prediction?



Learning Models

v"Want to recognize patterns (e.g.
sequence motifs), we have to learn from
the data



» Stochastic process with the Markov Property

— Stochastic processes are generally looked at as
collections of random variables

— Markov Property is simply that given the
present state, future states are independent of
the past.



* Think of a Markov Chain as a system we can
use to predict the future given the present

* Additionally in these systems the present
state only depends on two things:
— Previous state

— Probability of moving from previous state to
present state



Markov Chains
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Example: Estimating Mood State
from Grad Student Observations
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 Grad Student come In two flavors:

— Happy
— Depressed about research

« Each type of grad student has it's own
Markov chain associated with it.

* Finally, there are three locations we can
observe the grad students at:

— Lab
— Coffee Shop
— Bar



Example: “Happy” Grad Student
Markov Chain

Observations:
Lab, Coffee, Lab, Coffee, Lab, Lab, Bar, Lab, Coffee,...



Depressed about research




Evaluating Observations

v The probability of observing a given
sequence is equal to the product of all
observed transition probabillities.

X are the
Pr(x )]_[ Pr( (X, |\ 1) observations

v P(Coffee- >Bar->Lab) =

P(Coffee) P(Bar | Coffee) P(Lab | Bar)
P(CBL) = P(L|B) P(B|C)P(C)



1st order model

v’ Probability of Next State | Previous State
v’ Calculate all probabilities

 Note that there are a number of model orders
for Markov Chains. For the purposes of this
lecture we will stick with 1st order models

— Simply calculate Probability of next state given
current state

— Calculate all such probabilities to form a matrix of
possible transitions



Convert “Depressed”
Observations to Matrix




Scoring Observations: Depressed

Grad Student

From | From Coffee | From
Lab Shop Bar
To Lab 0.1 0.05 0.2
To Coffee 0.1 0.2 0.1
Shop
To Bar 0.8 0.75 0.7

Student 1:LLLCBCLLBBLL
Student 2:LCBLBBCBBBBL
Student 3:CCLLLLCRBCLLL

Pr from
each state
add to 1



Scoring Observations: Depressed

Grad Student

From | From Coffee | From
Lab Shop Bar
To Lab 0.1 0.05 0.2
To Coffee 0.1 0.2 0.1
Shop
To Bar 0.8 0.75 0.7

Student 1:LLLCBCLLBRBLL

Pr from
each state
add to 1

PS



Scoring Observations: Depressed

Grad Student

From | From Coffee | From
Lab Shop Bar
To Lab 0.1 0.05 0.2
To Coffee 0.1 0.2 0.1
Shop
To Bar 0.8 0.75 0.7

Student 1:LLLCBCLLBRBLL

Student 1:LLLCBCLLBBLL = (0.1)(0.1)(0.1)(0.75)(0.1)
(0.05)(0.1)(0.8)(0.7)(0.2)(0.1) = 4.2x10-9

Pr from
each state
add to 1



Scoring Observations: Depressed

Grad Student

From | From Coffee | From
Lab Shop Bar
To Lab 0.1 0.05 0.2
To Coffee 0.1 0.2 0.1
Shop
To Bar 0.8 0.75 0.7

Student 1:LLLCBCLLBBLL =4.2x10-9
Student 2: LCBLBBCRBBBRBL =4.3x10-5
Student 3:CCLLLLCBCLLL =3.8x10-11

Pr from
each state
add to 1

o



Equilibrium State

From From Coffee | From
Lab Shop Bar
To Lab 0.333 0.333 0.333
To Cofee | 0.333 0.333 0.333
Shop
To Bar 0.333 0.333 0.333
Student 1:LLLCBCLLBBLL = 5.6x10-6 ,
Student 2:LCBLBBCBBBBL = 5.6x10-6 gsS

Student 3:CCCLCCCBCCCL = 5.6x10-6



Comparing to Equilibrium States

Likellhood Ratios:

— Simply the ratio of the computed probability of the
string of observations given the original chain,
divided by the equilibrium.



Evaluation Observations

v’ Likelihood ratios:

v’ Student 1 =4.2x10-9 / 5.6x10-6 = 7.5x10-4
v’ Student 2 =4.3x10-5/5.6x10-6 = 7.7
v' Student 3 = 3.8x10-11/ 5.6x10-6 = 6.8 x 10-6

v Log likelihood ratios
v Student 1 =-3.2
v Student 2 = 0.9 (Most likely sad)
v Student 3 =-5.2
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The model could represent
Research Breakthrough (Happy)
Student!: Transition Probabilities

From From Coffee | From

Lab Shop Bar
To Lab 0.6 0.75 0.5
To Cofee | 0.25 0.2 0.45

Shop
To Bar 0.15 0.05 0.05




Combined Model

Depressed Student



“Generalized” HMM

Emission
Happy /\
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Generalized HMM - Combined

Model

offee Shop Bar

Depressed v




Simplifying the Markov Chains to
Oth order to model hidden states

* Describe the probability of being in a
particular state overall instead of having all
the transition probabilities

e Happy Student:
— Lab 75%
— Coffee 20%
— Bar 5%

e Sad Student:

— Lab 40%
— Coffee 20%

— Bar40%



HMM - Combined Model

o+ L:0.75

@ressed




Hiddenness

* Now we have general information about the
relationship between state and location

* |f we simply observe the locations of the
student can we tell what mood they are In?
— Mood is Hidden
— Observations are the locations of the students

— Parameters of the model are the probabilities of a
student being in a particular location



Evaluating Hidden State

v’ Evaluating Hidden State

v Observations:
LLILCBCLLBBLLCBLBBCRBBBRLCLLLCCL

Hidden state:
HHHHHHHHHHHHHDDDDDDDDDDHHHHHHH
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Applications
* Cryptanalysis

— The study of obtaining encrypted information without
access to the secret information which is required to
decode it.

* Speech Recognition

— |dentify the person who is speaking knowing only what
Is being said and a model for probable speakers

 Machine Translation

— Use computers to translate from one language to
another

* Gene Prediction

— Predicting when a gene is present based on nucleotide
observations



Particulars about HMMs

« HMMs ultimately need to be trained to be
truly effective

* Give the system a series of observations and
allow the model to adjust it's parameters
accordingly

* In the gene finding example we feed the
system a series of nucleotide sequences that
are known to be genes and non genes.



Gene Prediction

 \What we want:

— Find coding and noncoding regions of an
unlabeled string of DNA nucleotides

 \What's the motivation:

— Annotate genomic data which is becoming
abundant due to next generation sequencing
methods

— Gain insights into the mechanisms involved in
transcription, splicing and other processes



Why are HMMs a good fit for DNA
and Amino Acids?

 DNA sequences are In a particular order

which Iis necessary for HMMs (can’t have
unordered data)

* Lots of training data Is available for us to train

the system on what is a gene and what is not
a gene



HMM Caveats

« States are supposed to be independent of

each other and this isn’t always true

* Need to be mindful of overfitting

— Need a good training set

— More training data does not always mean a better
model

 HMMs can be slow (if proper Decoding not implemented)
— Some decoding maps out all paths through

the model

— DNA sequences can be very long so processing/
annotating them can be very time consuming



Genomic Applications

v Finding Genes
v" Finding Pathogenicity Islands



Example Bio App: Pathogenicity
Islands

Neisseria meningitidis, 52% G+C

v Clusters of genes acquired
by horizontal transfer

v Present in pathogenic species
but not others

v Frequently encode virulence

factors Content

v Toxins, secondary (from Tettelin et al. 2000. Science)
metabolites, adhesins

v' (Flanked by repeats, regulation and have
different codon usage)

v" Different GC content than rest of genome



Modeling Sequence Composition
(Simple Probability of Sequence)

v Calculate sequence distribution from
known islands

v" Count occurrences of A, T,G,C

v" Model islands as nucleotides drawn
independently from this distribution

..CCTAAGTTAGAGGATTGAGA....
/ \

!
A:0.15 A:0.15 | | A:0.15 | |
T:0.13 T013 || | |Tmo013 [
G: 0.30 G: 0.30 G: 0.30
C: 0.42 C: 0.42 C: 0.42

P(SIMP)




The Probability of a Sequence
(Simplistic)

v Can calculate the probability of a particular sequence
(S) according to the pathogenicity island model (MP)

P(S|MP) = P(S,.S,,..S, | MP) = [ | P(S, | MP)
el

Example

S = AAATGCGCATTTCGAA
A:0.15

P(S|MP)= P(A)' xP(T)' x P(G) x P(CY T 013
= (0.15)" x(0.13)* x(0.30) x(0.42)° G: 0.30

L L

-1.55%x10" C:0.42




A More Complex Model

0.85 ackground
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T: 0.25 T: 0.13
G: 0.25 G: 0.30
C:0.25 C:0.42

TAAGAATTGTGTCACACACATAAAAACCCTAAGTTAGAGGATTGAGATTGGCA
GACGATTGTTCGTGATAATAAACAAGGGGGGCATAGATCAGGCTCATATTGGC



A Generative Model

P(L,.,IL;) P(SIB) P(SIP)
B, P, {A: 0.25 dA: 0.42 D
| | T:0.25 T: 0.30
B, (o815 D G: 0.25 G: 0.13[]
P. (025 0.75 C:0. C:0.15 |




The Hidden in HMM

o .V . “-
v DNA does not come R
conveniently labeled (i.e. ;4 Statei ; i Statej »
Island, Gene, Promoter) 4 ~ R
v We observe nucleotide v e
sequences
..AAGTTAGAG...

v The hidden in HMM refers to
the fact that state labels, L,
are not observed

v Only observe emissions (e.g.
nucleotide sequence in our
example)



A Hidden Markov Model

Hidden States
L={1,.. K}

Transition probabilities
a,, = Transition probability
from state k to state |

Emission probabilities
e (b) = P( emitting b |
state=k)

Initial state probability
n(b) = P(first state=b)

Transition
Probabilities

N

Statei

e.(b)

Emission

Probabilities




HMM with Emission Parameters

v'a,;. Probability of a transition from State 1
to State 3

v'e,(A): Probability of emitting character A in

state 2 02 -5
A 0.4 ,|a 0.2
¢ o0.1] ©0.8 c 0.3
G 0.2 G 0.3
0.5,|T 0.3 T o.2%‘
|| B LB
0 / 5
0.5 A 0.4 A 0.1 0.9
¢ o0.1| 0.2 cC 0.4
G 0.1 G 0.4
0.8 |7 o.a T 0.1
.1 n



Hidden Markov Models (HMM)

v Allows you to find sub-sequence that fit
your model

v'Hidden states are disconnected from
observed states

v Emission/Transition probabilities
v'Must search for optimal paths



Three Basic Problems of HMMs

v The Evaluation Problem

v Given an HMM and a sequence of observations, what
IS the probability that the observations are generated
by the model?

v The Decoding Problem

v Given a model and a sequence of observations, what
IS the most likely state sequence in the model that
produced the observations?

v The Learning Problem

v' Given a model and a sequence of observations, how
should we adjust the model parameters in order to
maximize evaluation/decoding



Fundamental HMM Operations

Computation Biology

Decoding
v' Given an HMM and sequence S = Annotate pathogenicity

v Find a corresponding sequence islands on a new sequence
of labels, L

Evaluation

v Given an HMM and sequence S  Score a particular sequence
v' Find P(SIHMM)

Training

v' Given an HMM w/o parameters Learn a model for sequence
and set of sequences S composed of background

v' Find transition and emission DNA and pathogenicity

probabilities the maximize islands
P(S | params, HMM)



Markov chains and processes

15t order Markov chain

2nd grder Markov chain
15t order with stochastic observations -- HMM




Order & Conditional Probabilities

Order

Oth P(ACTGTC) = p(A) x p(C) x p(T) x p(G) x p(T) ...

1st  P(ACTGTC) = p(A) x p(CJA) x p(T|C) x p(G|T) ...

2nd  P(ACTGCG) = p(A) x p(CJA) x p(T|AC) x p(G|CT)...

P(T|AC)
Probability of T given AC



HMM - Combined Model for Gene

Detection

Noncoding



1st-order transition matrix (4x4)

A C G T
A 0.2 0.15 0.25 0.2
C 0.3 0.35 0.25 0.2
G 0.3 0.4 0.3 0.3
T 0.2 0.1 0.2 0.2




2nd Order Model (16x4)

A

C

G

AA

0.1

0.3

0.25

0.05

AC

0.05

0.25

0.3

0.1

AG

0.3

0.05

0.1

0.25

AT

0.25

0.1

0.05

0.3




Three Basic Problems of HMMs

v The Evaluation Problem

v Given an HMM and a sequence of observations, what
IS the probability that the observations are generated
by the model?

v The Decoding Problem

v Given a model and a sequence of observations, what
IS the most likely state sequence in the model that
produced the observations?

v The Learning Problem

v' Given a model and a sequence of observations, how
should we adjust the model parameters in order to
maximize



What Questions can an HMM
Answer?

Viterbi Algorithm:

What is the most probable path that

generated sequence X?
Forward Algorithm:

What is the likelihood of sequence X given
HMM M — Pr(X|M)?

Forward-Backward (Baum-Welch) Algorithm:
What is the probability of a particular state %
having generated symbol X.?



“‘Decoding” With HMM

Given observations, we would like to
predict a sequence of hidden states that

IS most likely to have generated that
sequence

Pathogenicity Island Example

Given a nucleotide sequence, we want a
labeling of each nucleotide as either

“pathogenicity island” or “background
DNA”



The Most Likely Path

v Given observations, one reasonable choice
for labeling the hidden states is:

L = arg max P(Labels, Sequence | Model)

The sequence of hidden state labels, L*,
(or path) that makes the labels and
sequence most likely given the model



Probability of a Path,Seq

P = P(G| B)P(B, | B,)P(C| B)P(B, | B,)P(A| B)P(B. | B,)...P(C| B,)

- (0.85) x(0.25)°

-4 9x10™




Probability of a Path,Seq

= (0.85)" x(0.25)° x(0.75)* x(0.42)* x0.30x0.15

-6.7x107

P=P(G|B)P(B, |B,)P(C|B)P(B, |B,)P(A| B)P(P,

B,)..P(C|B,)

We could try to calculate the probability of every path, but....




Decoding

v'Viterbi Algorithm

v'Finds most likely sequence of hidden states or
labels, L* or P* or a*, given sequence and
model

L = arg max P(Labels, Sequence | Model)

v'Uses dynamic programming (same technique
used in sequence alignment)

v"Much more efficient than searching every path



Finding Best Path
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v Viterbi

v'Dynamic programming

v Maximize Probability Emission of
observations on trace-back



Viterbi Algorithm

7 | / | Most probable state path given
sequence (observations)?
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Viterbi (in pseudocode)

vl is previous state and k is next state
v'v|(i)= (x;) max,(v,(i-1)ay)
v 1~ are the paths that maximizes the

probability of the previous path times
new transition in max, (v, (i-1)ay)

‘V‘v’ Each node picks one max
CStart > N\
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Forward Alg: Probability of a Single
Label (Hidden State)

Sum over all paths

L:
fi(1) = e(x) Zf (I-1)ay
S G C A A A T G C
Forward algorithm P(Label.=BIS)

(dynamic programming)

v" Calculate most probable label, L', , at each position i
v' Do this for all N positions gives us {L';, L',, L'5.... L'\}



Forward Algorithm

fi(1) = &) Zfi (1-1)ay

Add probs of all
Different paths to get
Probability of sequence

P(x) = 2 fi(N)ay,



Two Decoding Options

v'Viterbi Algorithm

v'Finds most likely sequence of hidden states, L* or P*
or ¥, given sequence and model

L = arg max P(Labels | Sequence, Model)

v'Posterior Decoding

v'Finds most likely label at each position for all
positions, given sequence and model

{L'y, Ly, L5, L'\

v'Forward and Backward equations



Relation between Viterbi and Forward

VITERBI

V(i) = P(most probable
path ending in state j
with observation /)

Initialization:
Vo(o) =1
V. (0) =0, forallk >0

Iteration: |
V|(i)= e(x)max,V,(i-1) a

Termination:

FORWARD

Initialization:

fo(o) =1

f(0) =0, forallk>0
Iteration:
fi(1) = e(x) Zfi(i-1)ayg

Termination:
P(x) = 2, f,(N)a,




Forward/Backward Algorithms

v"Way to compute probability of most probable

path

v'Forward and Backward can be combined to
find Probability of emission, x. from state k
given sequence X. P(m=k | x)

X) is called posterior decoding
x) = 1 ()b (1)/P(x)



Example Application: Bacillus subtilis

1418-1426 Nucleic Acids Research, 2002, Vol. 30, No. 6 © 2002 Oxford University Press

Mining Bacillus subtilis chromosome heterogeneities
using hidden Markov models

Pierre Nicolas'2*, Laurent Bize®, Florence Muri2, Mark Hoebeke', Francois Rodolphe’,
S. Dusko Ehrlich®, Bernard Prum? and Philippe Bessiéeres'

Laboratoire de Mathématique, Informatique et Génome, INRA, Route de Saint-Cyr, F-78026 Versailles cedex,
France, 2Laboratoire de Statistique et Génome, CNRS, Tour Evry2, 523 place des terrasses de I'’Agora, F-91034
Evry, France and 3Laboratoire de Génétique Microbienne, INRA, F-78352 Jouy-en-Josas cedex, France



Method

Three State Model Second Order Emissions

P(S,)=P(S/State,S,,S..,)

/\ (capturing trinucleotide
@ @ Frequencies)

Train using EM

H Predict w/Posterior Decoding

Nicolas et al (2002) NAR




Results

Gene on positive strand Gene on negative strand

S

yyaR similar to streptothricin acetyl-transferase yyaN similar to mercuric resistance operon regulat
tetB, tetL tetracycline resistance

L0 e T Voo, [ WY
u, u\’ ‘ - - %
Mi z //‘15_1 J ABC transportes] | | (o LJ‘\_{J Lwbdh

yvbA similar to arsenical resistance operon repressor

| 2N e R G e S R, . " E.

R

A/T Rich _ _ Each line is
- Intergenic regions P(labellS,model)
- Islands color coded by label

Nicolas et al (2002) NAR



Training an HMM

Transition probabilities
e.g. P(P;,4IB;) —the
probability of entering a
pathogenicity island from
background DNA

Emission probabilities
l.e. the nucleotide
frequencies for
background DNA and
pathogenicity islands

P(SIB)

P(SIP)




Learning From Labelled Data

If we have a sequence that has islands marked, we
can simply count

S:
P(L;, L)) . P(SIB) P(SIP)
B.,; Py, End A 1/5 A:
T: T:
B, |35 1/5 o (2/5 c: ETC..
P, 13 23 0 C: 25 C:
Start 1 0 0 7




Unlabelled Data

How do we know how to count?

QANV““AMMﬁxg v

S G C A A A T G C
7N\
P(LH_1 IL. ) P(SIB) P(SIP)
B, Py, End A A:
T T:
B, G G:
P. ? C C:
Start




Unlabeled Data

(P AP )APKAPIAP)
o LT
C

S, G C A A A T G

1.lmagine we start with some parameters P(L I )P(SIB)P(SIP)?
i+1"

(e.g. initial or bad model) P(L .
- i+ ||;)P(—S|'B')1P(—S|'P-)

2 We could calculate the most likely path, 1
P(L.,,IL)P(SIB)?P(SIP)?

P*, given those parameters and S

3.We could then use P* to recalculate our

parameters by maximum likelihood P(L;,4IL)'P(SIB)*P(SIP)¥

4.And iterate (to convergence)



Training Models for Classification

v" Correct Order for the model
v Higher order models remember more “history”

v Additional history can have predictive value
v Example:
v' predict the next word in this sentence fragment
v “  finish 7 (up, it, first, last, ...?)
v" now predict it given more history
v “Fast guys finish __”



Model Order

v However, the number of parameters to estimate
grows exponentially with the order for modeling
DNA we need parameters for an nth order model,
with n>=5 normally

v The higher the order, the less reliable we can

expect our parameter estimates to be

v' estimating the parameters of a 2nd order Markov
chain from the complete genome of E. Coli, each word
> 72,000 times on average

v' estimating the parameters of an 8th order chain, word
5 times on average



HMMs in Context

v HMMs
v Sequence alignment
v Gene Prediction

v' Generalized HMMs
v' Variable length states
v' Complex emissions models
v e.g. Genscan

v Bayesian Networks
v General graphical model
v" Arbitrary graph structure

v' e.g. Regulatory network
analysis




HMMs can model different regions

codons

Start codon Donor site

CCCAATQCCAT TATCAAA AAQG T CAG T GAGT

Transcription
start
\ ——— e — Exon

Acceptor site

Poly-A site
........ yd

Stop f°d°” U A A A A K TEEREC TS

ATICCCCATICCATGAIGCGCCCCT

igure 4.8: The structure of a gene with some of the important signals shown.



Example Model for Gene
Recognition

AN

Promoter

Trans-
cription
Factor




Another Example

o2

Gene on
forward strand

Intergenic

DNA

Gene on
reverse strand




CpG Islands: Another Application

v CG dinucleotides are rarer in eukaryotic
genomes than expected given the
independent probabilities of C, G

v’ Particularly, the regions upstream of
genes are richer in CG dinucleotides
than elsewhere - CpG islands



CpG Islands

CpG island DNA states: “Normal DNA” states:
large C, G transition small C, G transition
probabilities probabilities

T

N

A" Ct A C
fage tq K:'ele a
CG CG

G* T G T

—~— B —

CpG Island Sub-model Normal DNA Sub-model

Most transitions omitted for clarity



CpG Islands

v In human genome, CG dinucleotides are relatively
rare

v CG pairs undergo a process called methylation
that modifies the C nucleotide

v A methylated C mutate (with relatively high
chance)toa T

v Promotor regions are CG rich

v These regions are not methylated, and thus
mutate less often

v These are called CG (aka CpG) islands



CpG Island Prediction

v In a CpG island, the probability of a “C” following a “G” is
much higher than in “normal” intragenic DNA sequence.

v" We can construct an HMM to model this by combining
two HMMs: one for normal sequence and one for CpG
Island sequence.

v" Transitions between the two sub-models allow the model
to switch between CpG island and normal DNA.

v Because there is more than one state that can generate a
given character, the states are “hidden” when you just
see the sequence.

v For example, a “C” can be generated by either the C* or
C- states in the following model.



Inhomogenous Markov Chains
Borodovsky’s Lab: http://exon.gatech.edu/GeneMark/




Variable-length

()
AQ C' O G Q e,
Full
o O O 0O O O o O O O o o O o O O
ACGT ACGT ACGT ACG T
Variable
Length

O
C A C G T



Interpolated HMMs

v"Manage Model Trade-off by interpolating
between various HMM Model orders

v GlimmerHMM



The Three Basic HMM Problems

v Problem 1 (Evaluation):

Given the observation sequence O=0,,...,0; and an
HMM model, how do we compute the probability of O
given the model?

v Problem 2 (Decoding):
Given the observation sequence O=0,,...,0; and an
HMM model, how do we find the state sequence that
best explains the observations?



The Three Basic HMM Problems

v Problem 3 (Learning): How do we adjust
the model parameters to maximize the
probability of observations given the
model?



Conclusions

v'Markov Models
v HMMs

v Issues

v Applications



Example of Viterbi, Forward,
Backward, and Posterior Algorithms

Real DNA sequences are inhomogeneous and can be described
by a hidden Markov model with hidden states representing
different types of nucleotide composition. Consider an HMM that
includes two hidden states H and L for high and lower C+G
content, respectively. Initial probabilities for both H and L are
equal to 0.5, while transition probabilities are as follows: a,=0.5,
a, =0.5, a,,=0.6, a,,=0.4. Nucleotides T, C, A, G are emitted from
states H and L with probabilities 0.2, 0.3, 0.2, 0.3, and 0.3, 0.2,
0.3, 0.2, respectively. Use the Viterbi algorithm to define the most
likely sequence of hidden states for the sequence, X=TGC.



