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Outline

 Markov Models
 The Hidden Part
 How can we use this for gene 

prediction?



Learning Models

 Want to recognize patterns (e.g. 
sequence motifs), we have to learn from 
the data  







Markov Chains

A B C 
Probability 

of 
Transition 

Probability 
of 

Transition 

Current State only 
depends on previous 
state and transition 

probability 

aBA=Pr(xi=B|xi-1=A) 



Example:  Estimating Mood State 
from Grad Student Observations





Example: “Happy” Grad Student 
Markov Chain

Lab Coffee Shop Bar 

0.5 

0.3 0.2 

0.2 

0.7 

0.2 

Observations:   
Lab, Coffee, Lab, Coffee, Lab, Lab, Bar, Lab, Coffee,…   

0.5 

0.3 

0.1 



Depressed about research

Lab Coffee Shop Bar 

0.05 

0.1 0.75 

0.8 

0.1 

0.2 

0.1 

0.2 

0.7 



Evaluating Observations

 The probability of observing a given 
sequence is equal to the product of all 
observed transition probabilities.  

 P(Coffee->Bar->Lab) = 
   P(Coffee) P(Bar | Coffee) P(Lab | Bar) 

 P(CBL) = P(L|B) P(B|C)P(C)  

X are the 
observations 



1st order model

 Probability of Next State | Previous State
 Calculate all probabilities



Convert “Depressed” 
Observations to Matrix

Lab Coffee Shop Bar 

0.05 

0.1 0.75 

0.8 

0.1 

0.2 

0.1 

0.2 

0.7 



Scoring Observations: Depressed 
Grad Student

From 
Lab

From Coffee 
Shop

From 
Bar

To Lab 0.1 0.05 0.2

To Coffee 
Shop

0.1 0.2 0.1

To Bar 0.8 0.75 0.7

Pr from 
each state 
add to 1 

Student 1:LLLCBCLLBBLL 
Student 2:LCBLBBCBBBBL 
Student 3:CCLLLLCBCLLL  



Scoring Observations: Depressed 
Grad Student

From 
Lab

From Coffee 
Shop

From 
Bar

To Lab 0.1 0.05 0.2

To Coffee 
Shop

0.1 0.2 0.1

To Bar 0.8 0.75 0.7

Student 1:LLLCBCLLBBLL 

Pr from 
each state 
add to 1 

p’s 



Scoring Observations: Depressed 
Grad Student

From 
Lab

From Coffee 
Shop

From 
Bar

To Lab 0.1 0.05 0.2

To Coffee 
Shop

0.1 0.2 0.1

To Bar 0.8 0.75 0.7

Student 1:LLLCBCLLBBLL 

Pr from 
each state 
add to 1 



Scoring Observations: Depressed 
Grad Student

From 
Lab

From Coffee 
Shop

From 
Bar

To Lab 0.1 0.05 0.2

To Coffee 
Shop

0.1 0.2 0.1

To Bar 0.8 0.75 0.7

Student 1:LLLCBCLLBBLL = 4.2x10-9  
Student 2:LCBLBBCBBBBL = 4.3x10-5  
Student 3:CCLLLLCBCLLL = 3.8x10-11 

Pr from 
each state 
add to 1 

p’s 



Equilibrium State
From 
Lab

From Coffee 
Shop

From 
Bar

To Lab 0.333 0.333 0.333

To Cofee 
Shop

0.333 0.333 0.333

To Bar 0.333 0.333 0.333

Student 1:LLLCBCLLBBLL = 5.6x10-6  
Student 2:LCBLBBCBBBBL = 5.6x10-6  
Student 3:CCCLCCCBCCCL = 5.6x10-6 

q’s 



Comparing to Equilibrium States



Evaluation Observations

 Likelihood ratios: 
 Student 1 = 4.2x10-9 / 5.6x10-6 = 7.5x10-4 
 Student 2 = 4.3x10-5 / 5.6x10-6 = 7.7 
 Student 3 = 3.8x10-11 / 5.6x10-6 = 6.8 x 10-6 

 Log likelihood ratios  
 Student 1 = -3.2 
 Student 2 =  0.9  (Most likely sad) 
 Student 3 = -5.2  



The model could represent 
Research Breakthrough (Happy) 
Student!:  Transition Probabilities

From 
Lab

From Coffee 
Shop

From 
Bar

To Lab 0.6 0.75 0.5

To Cofee 
Shop

0.25 0.2 0.45

To Bar 0.15 0.05 0.05



Combined Model

Lab Coffee Shop Bar 

Lab Coffee Shop Bar 

Happy Student 

Depressed Student 



“Generalized” HMM

Lab Coffee Shop Bar 

Lab Coffee Shop Bar 

Emission 

Transition 

Happy 

Depressed 



Generalized HMM - Combined 
Model

Lab Coffee Shop Bar 

Lab Coffee Shop Bar 

Start End 

Happy 

Depressed 



Simplifying the Markov Chains  to 
0th order to model hidden states

 Happy:  Lab: 75%, Coffee: 20%, Bar 5%
 Sad: Lab:40%, Coffee: 20%, Bar 40%



HMM - Combined Model

Start End 

Happy 

Depressed 

L: 0.75 
C: 0.2 
B: 0.05 

L: 0.4 
C: 0.2 
B: 0.4 



Hiddenness



Evaluating Hidden State

 Evaluating Hidden State
 Observations:  
LLLCBCLLBBLLCBLBBCBBBBLCLLLCCL 
Hidden state:  
HHHHHHHHHHHHHDDDDDDDDDDHHHHHHH 



Applications



Particulars about HMMs



Gene Prediction



Why are HMMs a good fit for DNA 
and Amino Acids?



HMM Caveats

•    States are supposed to be independent of 
each other and this isn’t always true 
• Need to be mindful of overfitting 
– Need a good training set 
– More training data does not always mean a better 
model 
• HMMs can be slow (if proper Decoding not implemented) 
– Some decoding maps out all paths through 
the model 
– DNA sequences can be very long so processing/ 
annotating them can be very time consuming 



Genomic Applications

  Finding Genes
  Finding Pathogenicity Islands



Neisseria meningitidis, 52% G+C

(from Tettelin et al. 2000. Science)

GC 
Content

Example Bio App:  Pathogenicity 
Islands

 Clusters of genes acquired 
by horizontal transfer
 Present in pathogenic species 

but not others
 Frequently encode virulence 

factors
 Toxins, secondary 

metabolites, adhesins

 (Flanked by repeats, regulation and have 
different codon usage)

 Different GC content than rest of genome



Modeling Sequence Composition 
(Simple Probability of Sequence)

  Calculate sequence distribution from 
known islands
  Count occurrences of A,T,G,C

  Model islands as nucleotides drawn 
independently from this distribution

A: 0.15
T: 0.13
G: 0.30
C: 0.42

……
A: 0.15
T: 0.13
G: 0.30
C: 0.42

A: 0.15
T: 0.13
G: 0.30
C: 0.42

P(Si|MP)

... C C TA A G T T A G A G G A T T G A G A ….



The Probability of a Sequence 
(Simplistic)

 Can calculate the probability of a particular sequence 
(S) according to the pathogenicity island model (MP)

Example

S = AAATGCGCATTTCGAA
A: 0.15
T: 0.13
G: 0.30
C: 0.42



Background Island 

0.15 

0.25 
0.75 0.85 

A: 0.25
T: 0.25
G: 0.25
C: 0.25

TAAGAATTGTGTCACACACATAAAAACCCTAAGTTAGAGGATTGAGATTGGCA
GACGATTGTTCGTGATAATAAACAAGGGGGGCATAGATCAGGCTCATATTGGC

A: 0.15
T: 0.13
G: 0.30
C: 0.42

A More Complex Model



P

BB

PP

B

P P

B

P

B

P

B

P

B

P

B

A Generative Model

P P

B B B

P P

C A A A T G CGS:

B B B

P P P

B B

A: 0.42
T: 0.30
G: 0.13
C: 0.15

A: 0.25
T: 0.25
G: 0.25
C: 0.25

P(S|P)P(S|B)P(Li+1|Li)
Bi+1 Pi+1

Bi 0.85 0.15

Pi 0.25 0.75



The Hidden in HMM

 DNA does not come 
conveniently labeled (i.e. 
Island, Gene, Promoter)

 We observe nucleotide 
sequences

  The hidden in HMM refers to 
the fact that state labels, L, 
are not observed
 Only observe emissions (e.g. 

nucleotide sequence in our 
example)

State i State j 

…A A G T T A G A G…



A Hidden Markov Model

Hidden States 
L = { 1, ..., K }

Transition probabilities
akl = Transition probability 
from state k to state l

Emission probabilities
ek(b) = P( emitting b | 
state=k)

Initial state probability
      π(b) = P(first state=b)

State i State j 

el(b)ek(b)

Emission
Probabilities

Transition
Probabilities



HMM with Emission Parameters

 a13:  Probability of a transition from State 1 
to State 3

 e2(A):  Probability of emitting character A in 
state 2



Hidden Markov Models (HMM)

 Allows you to find sub-sequence that fit 
your model  

 Hidden states are disconnected from 
observed states  

 Emission/Transition probabilities  
 Must search for optimal paths 



Three Basic Problems of HMMs
 The Evaluation Problem

 Given an HMM and a sequence of observations, what 
is the probability that the observations are generated 
by the model?

 The Decoding Problem
 Given a model and a sequence of observations, what 

is the most likely state sequence in the model that 
produced the observations?

 The Learning Problem
 Given a model and a sequence of observations, how 

should we adjust the model parameters in order to 
maximize evaluation/decoding



Fundamental HMM Operations

Decoding
  Given an HMM and sequence S
  Find a corresponding sequence 

of labels, L   
Evaluation
  Given an HMM and sequence S
  Find P(S|HMM)

Training
  Given an HMM w/o parameters 

and set of sequences S
  Find transition and emission 

probabilities the maximize 
 P(S | params, HMM)

Computation Biology

Annotate pathogenicity 
islands on a new sequence

Score a particular sequence

Learn a model for sequence 
composed of background 
DNA and pathogenicity 
islands



Markov chains and processes
1st order Markov chain 

2nd order Markov chain 

1st order with stochastic observations -- HMM 



Order & Conditional Probabilities

P(ACTGTC) = p(A) x p(C) x p(T) x p(G) x p(T) ... 

P(ACTGTC) = p(A) x p(C|A) x p(T|C) x p(G|T) … 

P(ACTGCG) = p(A) x p(C|A) x p(T|AC) x p(G|CT)... 

Order 

0th 

1st 

2nd 

P(T|AC) 
Probability of T given AC 



HMM - Combined Model for Gene 
Detection

Start End 

Coding 

Noncoding 



1st-order transition matrix (4x4)

A C G T

A 0.2 0.15 0.25 0.2

C 0.3 0.35 0.25 0.2

G 0.3 0.4 0.3 0.3

T 0.2 0.1 0.2 0.2



2nd Order Model (16x4)

A C G T
AA 0.1 0.3 0.25 0.05
AC 0.05 0.25 0.3 0.1
AG 0.3 0.05 0.1 0.25
AT 0.25 0.1 0.05 0.3

.

.

.



Three Basic Problems of HMMs

 The Evaluation Problem
 Given an HMM and a sequence of observations, what 

is the probability that the observations are generated 
by the model?

 The Decoding Problem
 Given a model and a sequence of observations, what 

is the most likely state sequence in the model that 
produced the observations?

 The Learning Problem
 Given a model and a sequence of observations, how 

should we adjust the model parameters in order to 
maximize



What Questions can an HMM 
Answer? 

Viterbi Algorithm: 
What is the most probable path that 
generated sequence X? 
Forward Algorithm: 
What is the likelihood of sequence X given 
HMM M – Pr(X|M)? 
Forward-Backward (Baum-Welch) Algorithm: 
What is the probability of a particular state k 
having generated symbol Xi? 



“Decoding” With HMM

Pathogenicity Island Example
Given a nucleotide sequence, we want a 
labeling of each nucleotide as either 
“pathogenicity island” or “background 
DNA”

Given observations, we would like to 
predict a sequence of hidden states that 
is most likely to have generated that 
sequence



The Most Likely Path

 Given observations, one reasonable choice 
for labeling the hidden states is:

The sequence of hidden state labels, L*, 
(or path) that makes the labels and 

sequence most likely given the model



Probability of a Path,Seq

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

PP

0.25 0.25

B B B

0.25

0.85 0.85 0.85 0.85
B B B B B

0.85

0.25

0.85

0.25 0.25 0.25 0.25

0.85



Probability of a Path,Seq

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

PP

B B B B B
0.85

0.25

0.85

0.15 0.25

0.25 0.25 0.42 0.42 0.30 0.25 0.25

0.85

P P P
0.750.75

We could try to calculate the probability of every path, but….



Decoding

 Viterbi Algorithm
 Finds most likely sequence of hidden states or 

labels, L* or P* or π*, given sequence and 
model

 Uses dynamic programming (same technique 
used in sequence alignment) 

 Much more efficient than searching every path



Finding Best Path

 Viterbi 
 Dynamic programming  
 Maximize Probability Emission of 

observations on trace-back  



Viterbi Algorithm

Most  probable state path given 
sequence (observations)? 



Viterbi (in pseudocode)

 l is previous state and k is next state
 vl(i)= el(xi) maxk(vk(i-1)akl)
 π* are the paths that maximizes the 

probability of the previous path times 
new transition in maxk(vk(i-1)akl)

Each node picks one max 
Start 







Forward Alg:  Probability of a Single 
Label (Hidden State)

 Calculate most probable label, L*
i , at each position i

 Do this for all N positions gives us {L*
1, L*

2, L*
3…. L*

N}

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

PPP

B

P

B

P

B B

P

B B

P

B

P

B

PP
Sum over all paths

P(Label5=B|S)Forward algorithm
(dynamic programming)

fl(i) = el(xi) Σkfk(i-1)akl



Forward Algorithm

Start 

fl(i) = el(xi) Σkfk(i-1)akl

P(x) = Σk fk(N)ak0

Add probs of all 
Different paths to get 
Probability of sequence 



 Viterbi Algorithm
 Finds most likely sequence of hidden states, L* or P* 

or π*, given sequence and model

 Posterior Decoding
 Finds most likely label at each position for all 

positions, given sequence and model
            {L*

1, L*
2, L*

3…. L*
N}

 Forward and Backward equations

Two Decoding Options



Relation between Viterbi and Forward
VITERBI

Vj(i) = P(most probable 
path ending in state j 
with observation i )

Initialization:
V0(0) = 1
Vk(0) = 0, for all k > 0

Iteration:
Vl(i)= el(xi)maxkVk(i-1) akl

Termination:
P(x, π*) = maxkVk(N)

FORWARD

fl(i)=P(x1…xi,statei=l)

Initialization: 
f0(0) = 1
fk(0) = 0, for all k > 0

Iteration:
fl(i) = el(xi) Σkfk(i-1)akl

Termination:
P(x) = Σk fk(N)ak0



Forward/Backward Algorithms

 Way to compute probability of most probable 
path

 Forward and Backward can be combined to 
find Probability of emission, xi from state k 
given sequence x. P(πi=k | x)

 P(πi=k | x) is called posterior decoding
 P(πi=k | x) = fk(I)bk(I)/P(x)



Example Application: Bacillus subtilis



Method

Nicolas et al (2002) NAR

Gene+ Gene- 

AT Rich 

Second Order Emissions

P(Si)=P(Si|State,Si-1,Si-2)
(capturing trinucleotide

Frequencies)

Train using EM

Predict w/Posterior Decoding

Three State Model



Results

Nicolas et al (2002) NAR

Gene on positive strand

Each line is 
P(label|S,model)

color coded by label

Gene on negative strand

A/T Rich
-  Intergenic regions
-  Islands



Training an HMM

Transition probabilities
e.g. P(Pi+1|Bi) – the 
probability of entering a 
pathogenicity island from 
background DNA

Emission probabilities
i.e. the nucleotide 
frequencies for 
background DNA and 
pathogenicity islands

B P 

P(S|P)P(S|B)

P(Li+1|Li)



Learning From Labelled Data

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

If we have a sequence that has islands marked, we 
can simply count

A: 
T:  
G: 
C: 

P(S|P)P(S|B)P(Li+1|Li)
Bi+1 Pi+1 End

Bi 3/5 1/5 1/5

Pi 1/3 2/3 0

Start 1 0 0

Endstart

P

B B B B B

P

ETC..
!A:      1/5

T:        0
G:      2/5
C:      2/5



Unlabelled Data

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

How do we know how to count?

A: 
T:  
G: 
C: 

A:
T:        
G:
C:

P(S|P)P(S|B)P(Li+1|Li)

Start

?Pi

Pi+1

Bi

EndBi+1

Endstart

PP

?



Unlabeled Data

An idea:
1. Imagine we start with some parameters

(e.g. initial or bad model)

2. We could calculate the most likely path, 
P*, given those parameters and S

3. We could then use P* to recalculate our 
parameters by maximum likelihood

4. And iterate (to convergence)

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

P(S|P)0P(S|B)0P(Li+1|Li)0

Endstart

PP

P(S|P)1P(S|B)1P(Li+1|Li)1

P(S|P)2P(S|B)2P(Li+1|Li)2

P(S|P)KP(S|B)KP(Li+1|Li)K

…

B B BB B B B BB B B B B

P P P



Training Models for Classification

 Correct Order for the model
 Higher order models remember more “history” 
  Additional history can have predictive value 

  Example: 
   predict the next word in this sentence fragment 
  “…finish __” (up, it, first, last, …?) 
   now predict it given more history 
  “Fast guys finish __” 



Model Order
 However, the number of parameters to estimate 

grows exponentially with the order for modeling 
DNA we need parameters for an nth order model, 
with n>=5 normally

 The higher the order, the less reliable we can 
expect our parameter estimates to be
  estimating the parameters of a 2nd order Markov 

chain from the complete genome of E. Coli, each word 
> 72,000 times on average

  estimating the parameters of an 8th order chain, word 
5 times on average



HMMs in Context

  HMMs
  Sequence alignment
 Gene Prediction

  Generalized HMMs
  Variable length states 
  Complex emissions models
  e.g. Genscan

  Bayesian Networks
 General graphical model
  Arbitrary graph structure
  e.g. Regulatory network 

analysis



HMMs can model different regions



Example Model for Gene 
Recognition 

Promoter C Start 
Trans- 
cription  
Factor 

Exon Splice Intron 

Repeat 

End 



Another Example



CpG Islands:  Another Application

 CG dinucleotides are rarer in eukaryotic 
genomes than expected given the 
independent probabilities of C, G 

 Particularly, the regions upstream of 
genes are richer in CG dinucleotides 
than elsewhere - CpG islands 



Most transitions omitted for clarity 

A+ C+ 

G+ T+ 

+aGC +aCG 

A- C- 

G- T- 

-aGC -aCG 
B E 

-+aAC 

CpG island DNA states: 
large C, G transition 

probabilities 

“Normal DNA” states: 
small C, G transition 

probabilities 

CpG Island Sub-model Normal DNA Sub-model 

CpG Islands



CpG Islands

  In human genome, CG dinucleotides are relatively 
rare
 CG pairs undergo a process called methylation 

that modifies the C nucleotide
 A methylated C mutate (with relatively high 

chance) to a T
 Promotor regions are CG rich

 These regions are not methylated, and thus 
mutate less often

 These are called CG (aka CpG) islands



CpG Island Prediction

  In a CpG island, the probability of a “C” following a “G” is 
much higher than in “normal” intragenic DNA sequence.

 We can construct an HMM to model this by combining 
two HMMs: one for normal sequence and one for CpG 
island sequence.

  Transitions between the two sub-models allow the model 
to switch between CpG island and normal DNA.

  Because there is more than one state that can generate a 
given character, the states are “hidden” when you just 
see the sequence.

  For example, a “C” can be generated by either the C+ or 
C-

 states in the following model.



Inhomogenous Markov Chains
Borodovsky’s Lab:  http://exon.gatech.edu/GeneMark/ 



Variable-length

Full 

Variable 
Length 



Interpolated HMMs

 Manage Model Trade-off by interpolating 
between various HMM Model orders

 GlimmerHMM



The Three Basic HMM Problems

  Problem 1 (Evaluation): 
Given the observation sequence O=o1,…,oT and an 

HMM model, how do we compute the probability of O 
given the model?

  Problem 2 (Decoding): 
Given the observation sequence O=o1,…,oT and an 

HMM model, how do we find the state sequence that 
best explains the observations?



 Problem 3 (Learning): How do we adjust 
the model parameters to maximize the 
probability of observations given the 
model?

The Three Basic HMM Problems



Conclusions

 Markov Models 
 HMMs 
 Issues 
 Applications 



Example of Viterbi, Forward, 
Backward, and Posterior Algorithms

Real DNA sequences are inhomogeneous and can be described 
by a hidden Markov model with hidden states representing 
different types of nucleotide composition.  Consider an HMM that 
includes two hidden states H and L for high and lower C+G 
content, respectively.  Initial probabilities for both H and L are 
equal to 0.5, while transition probabilities are as follows: aHH=0.5, 
aHL=0.5, aLL=0.6, aLH=0.4.  Nucleotides T, C, A, G are emitted from 
states H and L with probabilities 0.2, 0.3, 0.2, 0.3, and 0.3, 0.2, 
0.3, 0.2, respectively.  Use the Viterbi algorithm to define the most 
likely sequence of hidden states for the sequence,  X=TGC. 


