# Introduction to Hidden Markov Models for Gene Prediction 

## ECE-S690



$$
\begin{aligned}
& \text { G AAAC A TA } \\
& \text { ATGCC GAATTCCTGAC } \\
& \text { T A C GA\A C AICAA AGA T T } A \\
& \text { こGATATGCTTTGAATA } 1 \\
& \text { TTGCCTAAGTTGGTG7 }
\end{aligned}
$$

## Outine

$\checkmark$ Markov Models
$\checkmark$ The Hidden Part
$\checkmark$ How can we use this for gene prediction?

## Learning Models

$\checkmark$ Want to recognize patterns (e.g. sequence motifs), we have to learn from the data

- Stochastic process with the Markov Property
- Stochastic processes are generally looked at as collections of random variables
- Markov Property is simply that given the present state, future states are independent of the past.
- Think of a Markov Chain as a system we can use to predict the future given the present
- Additionally in these systems the present state only depends on two things:
- Previous state
- Probability of moving from previous state to present state


## Markov Chains



## Example: Estimating Mood State from Grad Student Observations

- Grad Student come in two flavors:
- Happy
- Depressed about research
- Each type of grad student has it's own Markov chain associated with it.
- Finally, there are three locations we can observe the grad students at:
- Lab
- Coffee Shop
- Bar


## Example: "Happy" Grad Student Markov Chain



Observations:
Lab, Coffee, Lab, Coffee, Lab, Lab, Bar, Lab, Coffee,...

## Depressed about research



## Evaluating Observations

$\checkmark$ The probability of observing a given sequence is equal to the product of all observed transition probabilities.

$$
\operatorname{Pr}\left(x_{1}\right) \prod_{i=2}^{L} \operatorname{Pr}\left(x_{i} \mid x_{i-1}\right) \quad \begin{aligned}
& \mathrm{X} \text { are the } \\
& \text { observations }
\end{aligned}
$$

$\checkmark$ P(Coffee->Bar->Lab) $=$
P(Coffee) P(Bar | Coffee) P(Lab|Bar) $P(C B L)=P(L \mid B) P(B \mid C) P(C)$

## 1st order model

$\checkmark$ Probability of Next State I Previous State
$\checkmark$ Calculate all probabilities

- Note that there are a number of model orders for Markov Chains. For the purposes of this lecture we will stick with 1st order models
- Simply calculate Probability of next state given current state
- Calculate all such probabilities to form a matrix of possible transitions


## Convert "Depressed" Observations to Matrix



## Scoring Observations: Depressed Grad Student

|  | From <br> Lab | From Coffee <br> Shop | From <br> Bar |
| :--- | :---: | :---: | :---: |
| To Lab | 0.1 | 0.05 | 0.2 |
| To Coffee <br> Shop | 0.1 | 0.2 | 0.1 |
| To Bar | 0.8 | 0.75 | 0.7 |

Student 1:LLLCBCLLBBLL
Student 2:LCBLBBCBBBBL
Student 3:CCLLLLCBCLLL

## Scoring Observations: Depressed Grad Student

|  | From <br> Lab | From Coffee <br> Shop | From <br> Bar |
| :--- | :---: | :---: | :---: |
| To Lab | 0.1 | 0.05 | 0.2 |
| To Coffee <br> Shop | 0.1 | 0.2 | 0.1 |
| To Bar | 0.8 | 0.75 | 0.7 |

Pr from
each state add to 1

Student 1:LLLCBCLLBBLL
p's

## Scoring Observations: Depressed Grad Student

|  | From <br> Lab | From Coffee <br> Shop | From <br> Bar |
| :--- | :---: | :---: | :---: |
| To Lab | 0.1 | 0.05 | 0.2 |
| To Coffee <br> Shop | 0.1 | 0.2 | 0.1 |
| To Bar | 0.8 | 0.75 | 0.7 |

Student 1:LLLCBCLLBBLL
Student 1:LLLCBCLLBBLL $=(0.1)(0.1)(0.1)(0.75)(0.1)$ $(0.05)(0.1)(0.8)(0.7)(0.2)(0.1)=4.2 \times 10-9$

## Scoring Observations: Depressed Grad Student

|  | From <br> Lab | From Coffee <br> Shop | From <br> Bar |
| :--- | :---: | :---: | :---: |
| To Lab | 0.1 | 0.05 | 0.2 |
| To Coffee <br> Shop | 0.1 | 0.2 | 0.1 |
| To Bar | 0.8 | 0.75 | 0.7 |

Pr from
each state add to 1

Student 1: $\mathrm{LLLCBCLLBBLL}=4.2 \times 10-9$
Student 2:LCBLBBCBBBBL $=4.3 \times 10-5$
p's
Student 3:CCLLLLCBCLLL $=3.8 \times 10-11$

## Equilibrium State

|  | From <br> Lab | From Coffee <br> Shop | From <br> Bar |
| :--- | :---: | :---: | :---: |
| To Lab | 0.333 | 0.333 | 0.333 |
| To Cofee <br> Shop | 0.333 | 0.333 | 0.333 |
| To Bar | 0.333 | 0.333 | 0.333 |

Student 1:LLLCBCLLBBLL $=5.6 \times 10-6$ Student 2:LCBLBBCBBBBL $=5.6 \times 10-6$
q's Student 3:CCCLCCCBCCCL $=5.6 \times 10-6$

## Comparing to Equilibrium States

$$
\frac{\prod_{i} p_{x, x_{i}}}{\prod_{i} q_{x i} q_{x_{i}^{\prime}}}
$$

Likelihood Ratios:

- Simply the ratio of the computed probability of the string of observations given the original chain, divided by the equilibrium.


## Evaluation Observations

$\checkmark$ Likelihood ratios:
$\checkmark$ Student $1=4.2 \times 10-9 / 5.6 \times 10-6=7.5 \times 10-4$
$\checkmark$ Student $2=4.3 \times 10-5 / 5.6 \times 10-6=7.7$
$\checkmark$ Student $3=3.8 \times 10-11 / 5.6 \times 10-6=6.8 \times 10-6$
$\checkmark$ Log likelihood ratios
$\checkmark$ Student $1=-3.2$
$\checkmark$ Student $2=0.9$ (Most likely sad)

$\checkmark$ Student $3=-5.2$

## The model could represent

 Research Breakthrough (Happy) Student!: Transition Probabilities|  | From <br> Lab | From Coffee <br> Shop | From <br> Bar |
| :--- | :---: | :---: | :---: |
| To Lab | 0.6 | 0.75 | 0.5 |
| To Cofee <br> Shop | 0.25 | 0.2 | 0.45 |
| To Bar | 0.15 | 0.05 | 0.05 |

## Combined Model



Happy Student


Depressed Student

## "Generalized" HMM



## Generalized HMM - Combined Model



## Simplifying the Markov Chains to $0^{\text {th }}$ order to model hidden states

- Describe the probability of being in a particular state overall instead of having all the transition probabilities
- Happy Student:
- Lab 75\%
- Coffee 20\%
- Bar 5\%
- Sad Student:
- Lab 40\%
- Coffee 20\%
- Bar 40\%


## HMM - Combined Model



## Hiddenness

- Now we have general information about the relationship between state and location
- If we simply observe the locations of the student can we tell what mood they are in?
- Mood is Hidden
- Observations are the locations of the students
- Parameters of the model are the probabilities of a student being in a particular location


## Evaluating Hidden State

## $\checkmark$ Evaluating Hidden State

$\checkmark$ Observations:
LLLCBCLLBBLLCBLBBCBBBBLCLLLCCL Hidden state:
НнНННННнHHHHHDDDDDDDDDDHHHHHHH


## Applications

- Cryptanalysis
- The study of obtaining encrypted information without access to the secret information which is required to decode it.
- Speech Recognition
- Identify the person who is speaking knowing only what is being said and a model for probable speakers
- Machine Translation
- Use computers to translate from one language to another
- Gene Prediction
- Predicting when a gene is present based on nucleotide observations


## Particulars about HMMs

- HMMs ultimately need to be trained to be truly effective
- Give the system a series of observations and allow the model to adjust it's parameters accordingly
- In the gene finding example we feed the system a series of nucleotide sequences that are known to be genes and non genes.


## Gene Prediction

- What we want:
- Find coding and noncoding regions of an unlabeled string of DNA nucleotides
- What's the motivation:
- Annotate genomic data which is becoming abundant due to next generation sequencing methods
- Gain insights into the mechanisms involved in transcription, splicing and other processes


## Why are HMMs a good fit for DNA and Amino Acids?

- DNA sequences are in a particular order which is necessary for HMMs (can't have unordered data)
- Lots of training data is available for us to train the system on what is a gene and what is not a gene


## HMM Caveats

- States are supposed to be independent of each other and this isn't always true
- Need to be mindful of overfitting
- Need a good training set
- More training data does not always mean a better model
- HMMs can be slow (if proper Decoding not implemented)
- Some decoding maps out all paths through
the model
- DNA sequences can be very long so processing/ annotating them can be very time consuming


## Genomic Applications

$\checkmark$ Finding Genes
$\checkmark$ Finding Pathogenicity Islands

## Example Bio App: Pathogenicity Islands

Neisseria meningitidis, $\mathbf{5 2 \%}$ G+C
$\checkmark$ Clusters of genes acquired by horizontal transfer
$\checkmark$ Present in pathogenic species but not others
$\checkmark$ Frequently encode virulence factors
$\checkmark$ Toxins, secondary metabolites, adhesins

(from Tettelin et al. 2000. Science)
$\checkmark$ (Flanked by repeats, regulation and have different codon usage)
$\checkmark$ Different GC content than rest of genome

## Modeling Sequence Composition (Simple Probability of Sequence)


$\checkmark$ Calculate sequence distribution from known islands
$\checkmark$ Count occurrences of A,T,G,C
$\checkmark$ Model islands as nucleotides drawn independently from this distribution
... C C TA A G TTAGAGGATTGAGA....


## The Probability of a Sequence (Simplistic)

$\checkmark$ Can calculate the probability of a particular sequence $(\mathrm{S})$ according to the pathogenicity island model (MP)

$$
P(S \mid M P)=P\left(S_{1}, S_{2}, \ldots S_{N} \mid M P\right)=\prod_{i=1}^{n} P\left(S_{i} \mid M P\right)
$$

Example
S = AAATGCGCATTTCGAA

$$
\begin{aligned}
& P(S \mid M P)=P(A)^{6} \times P(T)^{4} \times P(G)^{3} \times P(C)^{2} \\
& \quad=(0.15)^{6} \times(0.13)^{4} \times(0.30)^{3} \times(0.42)^{2} \\
& \quad=1.55 \times 10^{-11}
\end{aligned}
$$

A: 0.15
T: 0.13
G: 0.30
C: 0.42

## A More Complex Model



TAAGAATTGTGTCACACACATAAAAACCCTAAGTTAGAGGATTGAGATTGGCA GACGATTGTTCGTGATAATAAACAAGGGGGGCATAGATCAGGCTCATATTGGC

## A Generative Model



## The Hidden in HMM

$\checkmark$ DNA does not come conveniently labeled (i.e. Island, Gene, Promoter)
$\checkmark$ We observe nucleotide sequences

...AAGTTAGAG...
$\checkmark$ The hidden in HMM refers to the fact that state labels, L, are not observed
$\checkmark$ Only observe emissions (e.g. nucleotide sequence in our example)

## A Hidden Markov Model

## Hidden States

$L=\{1, \ldots, K\}$
Transition probabilities $\mathrm{a}_{\mathrm{kl}}=$ Transition probability from state k to state l

Emission probabilities $\mathrm{e}_{\mathrm{k}}(\mathrm{b})=\mathrm{P}($ emitting b l state $=k$ )

Initial state probability
 $\pi(b)=P($ first state $=b)$

## HMM with Emission Parameters

$\checkmark \mathrm{a}_{13}$ : Probability of a transition from State 1 to State 3
$\checkmark \mathrm{e}_{2}(\mathrm{~A})$ : Probability of emitting character A in state 2


## Hidden Markov Models (HMM)

$\checkmark$ Allows you to find sub-sequence that fit your model
$\checkmark$ Hidden states are disconnected from observed states
$\checkmark$ Emission/Transition probabilities
$\checkmark$ Must search for optimal paths

## Three Basic Problems of HMMs

$\checkmark$ The Evaluation Problem
$\checkmark$ Given an HMM and a sequence of observations, what is the probability that the observations are generated by the model?
$\checkmark$ The Decoding Problem
$\checkmark$ Given a model and a sequence of observations, what is the most likely state sequence in the model that produced the observations?
$\checkmark$ The Learning Problem
$\checkmark$ Given a model and a sequence of observations, how should we adjust the model parameters in order to maximize evaluation/decoding

## Fundamental HMM Operations

Computation

## Decoding

$\checkmark$ Given an HMM and sequence S
$\checkmark$ Find a corresponding sequence labels, L

## Evaluation

$\checkmark$ Given an HMM and sequence $S$
$\checkmark$ Find $\mathrm{P}(\mathrm{SIHMM})$
Training
$\checkmark$ Given an HMM w/o parameters and set of sequences $S$
$\checkmark$ Find transition and emission probabilities the maximize P(S I params, HMM)

Biology

Annotate pathogenicity islands on a new sequence

Score a particular sequence

Learn a model for sequence composed of background DNA and pathogenicity islands

## Markov chains and processes

$1^{\text {st }}$ order Markov chain

$\underline{2^{\text {nd }}}$ order Markov chain

$1^{\text {st }}$ order with stochastic observations -- HMM


## Order \& Conditional Probabilities

## Order

0th $\quad P(A C T G T C)=p(A) \times p(C) \times p(T) \times p(G) \times p(T) \ldots$

1st $\quad P(A C T G T C)=p(A) \times p(C \mid A) \times p(T \mid C) \times p(G \mid T) \ldots$

2nd $\quad P(A C T G C G)=p(A) \times p(C \mid A) \times p(T \mid A C) \times p(G \mid C T) \ldots$
P(T|AC)
Probability of T given AC

## HMM - Combined Model for Gene Detection



1st-order transition matrix (4×4)

|  | A | C | G | T |
| :---: | :---: | :---: | :---: | :---: |
| A | 0.2 | 0.15 | 0.25 | 0.2 |
| C | 0.3 | 0.35 | 0.25 | 0.2 |
| G | 0.3 | 0.4 | 0.3 | 0.3 |
| T | 0.2 | 0.1 | 0.2 | 0.2 |

## 2nd Order Model (16x4)

|  | A | C | G | T |
| :---: | :---: | :---: | :---: | :---: |
| AA | 0.1 | 0.3 | 0.25 | 0.05 |
| AC | 0.05 | 0.25 | 0.3 | 0.1 |
| AG | 0.3 | 0.05 | 0.1 | 0.25 |
| AT | 0.25 | 0.1 | 0.05 | 0.3 |

## Three Basic Problems of HMMs

$\checkmark$ The Evaluation Problem
$\checkmark$ Given an HMM and a sequence of observations, what is the probability that the observations are generated by the model?
$\checkmark$ The Decoding Problem
$\checkmark$ Given a model and a sequence of observations, what is the most likely state sequence in the model that produced the observations?
$\checkmark$ The Learning Problem
$\checkmark$ Given a model and a sequence of observations, how should we adjust the model parameters in order to maximize

## What Questions can an HMM Answer?

Viterbi Algorithm:
What is the most probable path that generated sequence X ?
Forward Algorithm:
What is the likelihood of sequence X given HMM M - $\operatorname{Pr}(\mathrm{X} \mid \mathrm{M})$ ?
Forward-Backward (Baum-Welch) Algorithm: What is the probability of a particular state $k$ having generated symbol $X_{i}$ ?

## "Decoding" With HMM

Given observations, we would like to predict a sequence of hidden states that is most likely to have generated that sequence

## Pathogenicity Island Example

Given a nucleotide sequence, we want a labeling of each nucleotide as either
"pathogenicity island" or "background
DNA"

## The Most Likely Path

$\checkmark$ Given observations, one reasonable choice for labeling the hidden states is:
$L^{*}=\arg \max P($ Labels, Sequence $\mid$ Model $)$

The sequence of hidden state labels, $\mathrm{L}^{*}$, (or path) that makes the labels and sequence most likely given the model

## Probability of a Path,Seq



$$
\begin{aligned}
P & =P(G \mid B) P\left(B_{1} \mid B_{0}\right) P(C \mid B) P\left(B_{2} \mid B_{1}\right) P(A \mid B) P\left(B_{3} \mid B_{2}\right) \ldots P\left(C \mid B_{7}\right) \\
& =(0.85)^{7} \times(0.25)^{8} \\
& =4.9 \times 10^{-6}
\end{aligned}
$$

## Probability of a Path,Seq



$$
\begin{aligned}
P & =P(G \mid B) P\left(B_{1} \mid B_{0}\right) P(C \mid B) P\left(B_{2} \mid B_{1}\right) P(A \mid B) P\left(P_{3} \mid B_{2}\right) \ldots P\left(C \mid B_{7}\right) \\
& =(0.85)^{3} \times(0.25)^{6} \times(0.75)^{2} \times(0.42)^{2} \times 0.30 \times 0.15 \\
& =6.7 \times 10^{-7}
\end{aligned}
$$

We could try to calculate the probability of every path, but....

## Decoding

$\checkmark$ Viterbi Algorithm
$\checkmark$ Finds most likely sequence of hidden states or labels, $L^{*}$ or $\mathrm{P}^{*}$ or $\pi^{*}$, given sequence and model

## $L^{*}=\arg \max P($ Labels, Sequence $\mid$ Model $)$

$\checkmark$ Uses dynamic programming (same technique used in sequence alignment)
$\checkmark$ Much more efficient than searching every path

## Finding Best Path


$\checkmark$ Viterbi
$\checkmark$ Dynamic programming
$\checkmark$ Maximize Probability Emission of observations on trace-back

## Viterbi Algorithm



Most probable state path given sequence (observations)?


## Viterbi (in pseudocode)

$\checkmark I$ is previous state and $k$ is next state
$\checkmark \mathrm{v}_{\mathrm{l}}(\mathrm{i})=\mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}}\right) \max _{\mathrm{k}}\left(\mathrm{v}_{\mathrm{k}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{k} \mid}\right)$
$\checkmark \pi^{*}$ are the paths that maximizes the probability of the previous path times new transition in $\max _{k}\left(\mathrm{v}_{\mathrm{k}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{k}}\right)$


Each node picks one max


## Forward Alg: Probability of a Single Label (Hidden State)

Sum over all paths
L:


Forward algorithm (dynamic programming)
$P\left(\right.$ Label $\left._{5}=\mathrm{BIS}\right)$
$\checkmark$ Calculate most probable label, $L_{i}^{*}$, at each position i
$\checkmark$ Do this for all $N$ positions gives us $\left\{L^{*}{ }_{1}, L^{*}{ }_{2}, L^{*}{ }_{3} \ldots . \mathrm{L}^{*}{ }_{N}\right\}$

## Forward Algorithm

$$
\mathrm{f}_{\mathrm{l}}(\mathrm{i})=\mathrm{e}_{1}\left(\mathrm{x}_{\mathrm{i}}\right) \Sigma_{\mathbf{k}} \mathrm{f}_{\mathrm{k}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{k} \mid}
$$



$$
\mathrm{P}(\mathrm{x})=\Sigma_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}(\mathrm{~N}) \mathrm{a}_{\mathrm{k} 0}
$$

Add probs of all Different paths to get Probability of sequence

## Two Decoding Options

$\checkmark$ Viterbi Algorithm
$\checkmark$ Finds most likely sequence of hidden states, $\mathrm{L}^{*}$ or $\mathrm{P}^{*}$ or $\pi^{*}$, given sequence and model
$L^{*}=\arg \max P($ Labels $\mid$ Sequence, Model $)$ babub
$\checkmark$ Posterior Decoding
$\checkmark$ Finds most likely label at each position for all positions, given sequence and model

$$
\left\{L^{*}{ }_{1}, L_{2}^{*}, L_{3}^{*} \ldots L_{N}^{*}\right\}
$$

$\checkmark$ Forward and Backward equations

Relation between Viterbi and Forward

## VITERBI

$\mathrm{V}_{\mathrm{j}}(\mathrm{i})=\mathrm{P}$ (most probable path ending in state $j$ with observation i)

Initialization:
$V_{0}(0)=1$
$\mathrm{V}_{\mathrm{k}}(0)=0$, for all $\mathrm{k}>0$
Iteration:
$\mathrm{V}_{\mathrm{l}}(\mathrm{i})=\mathrm{e}_{\mid}\left(\mathrm{x}_{\mathrm{i}}\right) \max _{\mathrm{k}} \mathrm{V}_{\mathrm{k}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{kl}}$
Termination:
$\mathrm{P}\left(\mathrm{x}, \pi^{*}\right)=\max _{\mathrm{k}} \mathrm{V}_{\mathrm{k}}(\mathrm{N})$

FORWARD
$\mathrm{f}_{\mathrm{l}}(\mathrm{i})=\mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}\right.$, state $\left._{\mathrm{i}}=\mathrm{l}\right)$
Initialization:

$$
\begin{aligned}
& f_{0}(0)=1 \\
& f_{k}(0)=0, \text { for all } k>0
\end{aligned}
$$

Iteration:
$\mathrm{f}_{\mathrm{l}}(\mathrm{i})=\mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}}\right) \Sigma_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{k} \mid}$

Termination:

$$
\mathrm{P}(\mathrm{x})=\Sigma_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}(\mathrm{~N}) \mathrm{a}_{\mathrm{k} 0}
$$

## Forward/Backward Algorithms

$\checkmark$ Way to compute probability of most probable path
$\checkmark$ Forward and Backward can be combined to find Probability of emission, $\mathrm{x}_{\mathrm{i}}$ from state k given sequence $x$. $P\left(\pi_{i}=k \mid x\right)$
$\checkmark P\left(\pi_{i}=k \mid x\right)$ is called posterior decoding
$\checkmark \mathrm{P}\left(\pi_{i}=k \mid x\right)=f_{k}(I) b_{k}(I) / P(x)$

## Example Application: Bacillus subtilis

## Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models

Pierre Nicolas ${ }^{1,2,{ }^{\star}}$, Laurent Bize ${ }^{3}$, Florence Muri ${ }^{2}$, Mark Hoebeke ${ }^{1}$, François Rodolphe ${ }^{1}$, S. Dusko Ehrlich ${ }^{3}$, Bernard Prum ${ }^{2}$ and Philippe Bessières ${ }^{1}$
${ }^{1}$ Laboratoire de Mathématique, Informatique et Génome, INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France, ²Laboratoire de Statistique et Génome, CNRS, Tour Évry2, 523 place des terrasses de l'Agora, F-91034
Évry, France and ${ }^{3}$ Laboratoire de Génétique Microbienne, INRA, F-78352 Jouy-en-Josas cedex, France

## Method

Three State Model


Second Order Emissions
$P\left(S_{i}\right)=P\left(S_{i} \mid\right.$ State, $\left.\mathbf{S}_{i-1}, S_{i-2}\right)$
(capturing trinucleotide Frequencies)

Train using EM
Predict w/Posterior Decoding

Nicolas et al (2002) NAR

## Results

Gene on positive strand



A/T Rich

- Intergenic regions
- Islands

> Each line is
> P(labellS,model) color coded by label

Nicolas et al (2002) NAR

## Training an HMM

Transition probabilities
e.g. $P\left(P_{i+1} \mid B_{i}\right)$ - the probability of entering a pathogenicity island from background DNA

Emission probabilities
i.e. the nucleotide frequencies for background DNA and pathogenicity islands


## Learning From Labelled Data

If we have a sequence that has islands marked, we can simply count


## Unlabelled Data

How do we know how to count?


S:
G $\quad \mathbf{C} \quad \mathrm{A}$
A
A
G
C

| $\left(L_{i+1} I L_{i}\right)$ |  |  |  |
| :--- | :--- | :--- | :--- |
|  | $B_{i+1}$ | $P_{i+1}$ | End |
| $B_{i}$ |  |  |  |
| $P_{i}$ |  | $?$ |  |
| Start |  |  |  |



P(SIP)


## Unlabeled Data



An S: $\quad$ G $\quad$ C $\quad$ A $\quad$ A $\quad$ A $\quad$ T $\quad$ G $\quad$ C

1. Imagine we start with some parameters $\mathbf{P}\left(\mathrm{L}_{\mathrm{i}+1} \mathrm{LL}_{\mathrm{i}}\right) \mathrm{P}(\mathrm{SIB})^{0} \mathbf{P}(\mathrm{SIP})^{0}$ (e.g. initial or bad model) $\mathbf{P}\left(\mathrm{L}_{\mathrm{i}+1} 1 \mathrm{~L}_{\mathrm{i}}\right) \mathbf{P}(\mathrm{SIB})^{1} \mathrm{P}(\mathrm{SIP})^{1}$ 2. We could calculate the most likely path, $\left.\left.\mathbf{P ( L _ { i + 1 }} \mathrm{L}_{\mathrm{i}} \mathrm{L}_{\mathrm{i}}\right) \mathbf{P ( S I B}\right)^{2} \mathbf{P}(\text { SIP })^{2}$ $\mathrm{P}^{*}$, given those parameters and $S$
2. We could then use $P^{*}$ to recalculate our parameters by maximum likelihood
4.And iterate (to convergence)

## Training Models for Classification

$\checkmark$ Correct Order for the model
$\checkmark$ Higher order models remember more "history"
$\checkmark$ Additional history can have predictive value
$\checkmark$ Example:
$\checkmark$ predict the next word in this sentence fragment
$\checkmark$ "...finish __" (up, it, first, last, ...?)
$\checkmark$ now predict it given more history
$\checkmark$ "Fast guys finish $\qquad$

## Model Order

$\checkmark$ However, the number of parameters to estimate grows exponentially with the order for modeling DNA we need parameters for an nth order model, with $n>=5$ normally
$\checkmark$ The higher the order, the less reliable we can expect our parameter estimates to be
$\checkmark$ estimating the parameters of a 2nd order Markov chain from the complete genome of E . Coli, each word $>72,000$ times on average
$\checkmark$ estimating the parameters of an 8th order chain, word 5 times on average

## HMMs in Context

$\checkmark$ HMMs
$\checkmark$ Sequence alignment
$\checkmark$ Gene Prediction
$\checkmark$ Generalized HMMs
$\checkmark$ Variable length states
$\checkmark$ Complex emissions models
$\checkmark$ e.g. Genscan
$\checkmark$ Bayesian Networks
$\checkmark$ General graphical model
$\checkmark$ Arbitrary graph structure
$\checkmark$ e.g. Regulatory network analysis


## HMMs can model different regions


igure 4.8: The structure of a gene with some of the important signals shown.

## Example Model for Gene Recognition



## Another Example



## CpG Islands: Another Application

$\checkmark$ CG dinucleotides are rarer in eukaryotic genomes than expected given the independent probabilities of $\mathrm{C}, \mathrm{G}$
$\checkmark$ Particularly, the regions upstream of genes are richer in CG dinucleotides than elsewhere - CpG islands

## CpG Islands



## CpG Islands

$\checkmark$ In human genome, CG dinucleotides are relatively rare
$\checkmark$ CG pairs undergo a process called methylation that modifies the C nucleotide
$\checkmark$ A methylated C mutate (with relatively high chance) to a T
$\checkmark$ Promotor regions are CG rich
$\checkmark$ These regions are not methylated, and thus mutate less often
$\checkmark$ These are called CG (aka CpG) islands

## CpG Island Prediction

$\checkmark$ In a CpG island, the probability of a "C" following a "G" is much higher than in "normal" intragenic DNA sequence.
$\checkmark$ We can construct an HMM to model this by combining two HMMs: one for normal sequence and one for CpG island sequence.
$\checkmark$ Transitions between the two sub-models allow the model to switch between CpG island and normal DNA.
$\checkmark$ Because there is more than one state that can generate a given character, the states are "hidden" when you just see the sequence.
$\checkmark$ For example, a " $C$ " can be generated by either the $\mathrm{C}^{+}$or $\underline{C}$ - states in the following model.

## Inhomogenous Markov Chains

Borodovsky's Lab: http://exon.gatech.edu/GeneMark/


## Variable-length

Full


Variable Length


## Interpolated HMMs

$\checkmark$ Manage Model Trade-off by interpolating between various HMM Model orders
$\checkmark$ GlimmerHMM

## The Three Basic HMM Problems

$\checkmark$ Problem 1 (Evaluation):
Given the observation sequence $\mathrm{O}=\mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{T}}$ and an HMM model, how do we compute the probability of $O$ given the model?
$\checkmark$ Problem 2 (Decoding):
Given the observation sequence $\mathrm{O}=\mathrm{o}_{1}, \ldots, \mathrm{o}_{\top}$ and an HMM model, how do we find the state sequence that best explains the observations?

## The Three Basic HMM Problems

$\checkmark$ Problem 3 (Learning): How do we adjust the model parameters to maximize the probability of observations given the model?

## Conclusions

$\checkmark$ Markov Models
$\checkmark$ HMMs
$\checkmark$ Issues
$\checkmark$ Applications

## Example of Viterbi, Forward, Backward, and Posterior Algorithms

Real DNA sequences are inhomogeneous and can be described by a hidden Markov model with hidden states representing different types of nucleotide composition. Consider an HMM that includes two hidden states H and L for high and lower C+G content, respectively. Initial probabilities for both H and L are equal to 0.5 , while transition probabilities are as follows: $\mathrm{a}_{\mathrm{HH}}=0.5$, $\mathrm{a}_{\mathrm{HL}}=0.5, \mathrm{a}_{\mathrm{LL}}=0.6, \mathrm{a}_{\mathrm{LH}}=0.4$. Nucleotides T, C, A, G are emitted from states H and L with probabilities $0.2,0.3,0.2,0.3$, and $0.3,0.2$, $0.3,0.2$, respectively. Use the Viterbi algorithm to define the most likely sequence of hidden states for the sequence, $X=T G C$.

